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Emerging wireless ecosystem
• Networked Intelligent Systems: 

– real time autonomous systems
• Sensor fusion, on time status updates, real time information 

reconstruction, network and device computation, traffic 
flows with synced requirements, autonomous interactions

• Distributed ML over wireless

– Exchange of large datasets in a timely manner
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The envisioned use cases and applications will stress future networks to deliver an 
unprecedented number of highly demanding requirements.

• All wireless systems are built upon fundamental principles of reliable communications over noisy 
channels.

• In existing communication paradigms, the main objective is to optimize performance metrics, such 
as throughput, delay, or packet loss. Quality of service (QoS) is provisioned through network over-
provisioning and resource reservation control.

• Is not only about understanding the throughput-reliability-delay tradeoff.

• Maximizing throughput or minimizing delay is not enough for optimal 
operation in applications based on timely status updates, remote 
computations, and/or real-time event detection.



Towards Goal-oriented Semantic Communication

• Communication is about achieving specific goals.

• Semantics: the semantic value of information is its usefulness in attaining a certain goal 
(pragmatics). 

• Influence the relevance and effectiveness of the information we communicate, depending on the 
applications objectives. 

• Utilize innate and contextual attributes of information.

• A holistic redesign of the entire process of information generation, processing, transmission, and 
reconstruction.
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Relevant use cases
• control-oriented (e.g., remote control, actuation, stochastic process tracking,…)
• computation-oriented (e.g., function computation, labelling, feature extraction)
• learning-oriented (e.g., distributed/federated learning, …)
• sensing/perception-oriented (e.g., multi-view cameras, situational awareness,…)



How to quantify importance of information
• Real-time / time sensitive systems: 

Information usually has the highest value when 
it is fresh! (e.g., autonomous driving: info about 
location/speed/sensors)

• Age of Information (AoI):
• AoI and its variants: simple, quantitative proxy metrics of 

information semantics
• Instrumental in establishing suboptimality of 

separate handling of sampling and communication

• Other cases such as
– Quality of Information (QoI)
– Value of Information (VoI)
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Why we need fresh data

• Performance metrics used in the literature to characterize time sensitive 
information:
– Packet delay tracks the time that elapsed from the generation of the packet 

until its delivery, 
– inter-delivery time is the time between two successive deliveries. 

• These metrics are not sufficient to maintain fresh information at the 
destination.
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Why we need fresh data
• Timeliness of information has emerged as a new field of network research. 
• Even in the simplest queueing systems, timely updating is not the same as 

maximizing the utilization of the system that delivers these updates, nor the same as 
ensuring that updates are received with minimum delay. 
– While utilization is maximized by sending updates as fast as possible, this strategy will lead to a 

monitor receiving delayed updates that were backlogged in the communication system. 
– In this case, the timeliness of status updates at the receiver can be improved by reducing the update

rate. 
– Reducing the update rate will cause outdated status information at the receiver due to the lack of

updates.

2022-04-07 9

S. Kaul, R. Yates, and M. Gruteser, “Real-time status: How often should one update?” IEEE INFOCOM 2012.
A. Kosta, N. Pappas, V. Angelakis, “Age of Information: A New Concept, Metric, and Tool”, 
Foundations and Trends in Networking: Vol. 12, No. 3, 2017.



Definition and Modeling of AoI



Definition of Age of Information (AoI)
• AoI is an end-to-end metric that can characterize

latency in status updating systems and 
applications and captures the timeliness of the 
information. 

• An update packet with timestamp u has age t-u at 
a time t. 

• An update is fresh if its age is zero. 
• When the monitor’s freshest received update at 

time t has timestamp u(t), the age is the random
process Δ(t) = t - u(t).
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Fig. 5. Time-average age as a function of offered load ⇢ = �/mu for
the FCFS M/M/1, M/D/1 and D/M/1 queues. The expected service
time is 1/µ = 1.

the LCFS ability for the freshest update to jump ahead of
older update packets is negated. However, at high loads, packet
management ensures that that the M/M/1/2⇤, M/M/1/1 and
M/M/1⇤ queues have average age that decreases with offered
load.5 In fact, as the arrival rate � ! 1, the age �M/M/1⇤

will approach the 2/µ lower bound for exponential service
systems because bombarding the server with new update
packets ensures that a fresh status update packet will enter
the waiting room the instant before each service completion.

One can conclude for memoryless service systems that
preemption of old updates by new always helps. However,
the comparisons are muddier when we compare buffering
vs. discarding. This is particularly true when we compare
�M/M/1, which buffers every update, against the ages �M/M/1/1
and �M/M/1/2.

We also note, however, that the apparent superiority of
preemption in service is somewhat misleading; this property
holds for memoryless service times, but not in general. For ex-
ample, the M/D/1⇤ and D/M/1⇤ queues, both of which support
preemption in service, have average ages [20, pp. 8318]
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In (29), and also in Fig. 3, we see that the average age �D/M/1⇤

of the D/M/1 preemptive server is monotonically decreasing
in the offered load ⇢. This is because no matter how high
the arrival rate � is (and thus how fast packets are being
preempted), the departure rate is µ as long as an update is in
service. By contrast, in the preemptive M/D/1⇤ queue, �M/D/1⇤

has a minimum at ⇢ = 1 and increases without bound for
⇢ > 1. With deterministic unit-time service and arrival rate
� = ⇢, an update completes service with probability e

�⇢. As
⇢ becomes large, too many updates are preempted, and the
system thrashes, with updates being preempted before they
can complete service and be delivered to the monitor.

B. Zero-wait updates
When the update generator (source) can neither observe

nor control the state of the packet update queue, the optimal
load ⇢

⇤ strikes a balance between overloading the queue and
leaving the queue idle. Here we derive lower bounds to the

5Because congestion is avoided by blocking packets, �M/M/1/2 avoids
blowing up as ⇢ ! 1. However, it achieves a minimum age of � = 2.61
at ⇢ = 1.427 and then becomes an increasing function for ⇢ > 1.427. For
large ⇢, the M/M/1/2 queue admits its next update too quickly.
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Fig. 6. Time-average age as a function of offered load ⇢ for the
FCFS M/M/1/2 and M/M/1/1 blocking queues, the LCFS M/D/1⇤,
M/M/1⇤, and D/M/1⇤ queues supporting preemption in service, and
the M/M/1/2⇤ queue supporting preemption in waiting. The expected
service time is 1/µ = 1.

age � by considering a system in which the update generator
observes the state of the packet update queue so that a new
status update arrives just as the previous update packet departs
the queue. Since each delivered update packet is as fresh as
possible, the average age for this system is a lower bound to
the age for any queue in which updates are generated as a
stochastic process independent of the current queue state.

In this zero-wait systems, the update service times Sn are
i.i.d. with first and second moments E[S] and E

⇥
S

2
⇤
. Referring

to the age function �(t) in Figure 2, tn = t
0
n�1. This implies

update n has interarrival time Yn = Sn�1, zero waiting time,
and system time Tn = Sn. Further, E[Y T ] = E[YnTn] =
E[Sn�1Sn] = (E[S])2. From Equation (3), the average age
becomes
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1
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
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2
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�
. (30)

It follows that for a system with memoryless service times
with E[S] = 1/µ, the minimum average age is

�⇤
·/M/1 = 2/µ. (31)

Moreover, non-negativity of the variance of S implies
E
⇥
S

2
⇤
� (E[S])2, Thus, for all service time distributions with

E[S] = 1/µ, (30) yields the lower bound

�⇤ � 3 E[S]

2
=

3

2µ
. (32)

This lower bound is tight as it is achievable when the service
times are deterministic.

C. Multiple Sources at a Single-server Queue
When updates have stochastic service times, AoI analysis of

multiple updating sources sharing a simple queue has proven
challenging and there have been relatively few contributions6

[22], [68]–[71]. In these papers, each source i generates
updates as an independent Poisson process of rate �i and the
service time S of an update has expected value 1/µ. Thus
source i has offered load ⇢i = �i/µ and the total offered load
is ⇢ =

PN
i=1 ⇢i.

Extending the single-source age analysis in [72], reference
[70] derived the average age and average peak age of each

6We will see in Sections IV and VII that there has been much more interest
in using complex scheduling to support multiple sources.

IEEE GLOBECOM 2018 10 December 2018 1

What is Age of Information?

µ
λ

s d

information packets/
data samples

source queue destination

• A stochastic process is being observed by a source that
extracts samples.

• The status updates are transmitted over a network to
update the destination.

• The age of information captures the elapsed time since the
last received status update was generated.
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• t0,t1,t2,… times that are updates are generated
• to’,t1’, t2’,… times that updates are received at 

the monitor

• For the n-th received update
• Yn = tn-tn-1 interarrival time
• Tn system time
• Dn = tn’-tn-1’ interdeparture time 
• An corresponding peak age
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Fig. 2. An age sample path: updates from a source arrive at times t0, t1, . . .
and are received at the monitor at times T 0

0, T1.0 . . .. For the nth delivered
update, Yn, Tn and Dn are the interarrival, system and inter-departure times,
and An is the corresponding age peak.

Figure 2 shows a sawtooth sample path of an age process
�(t) in greater detail. For simplicity of exposition, the length
of the observation interval is chosen to be T = t

0
n, as depicted

in Figure 2. We decompose the area defined by the integral
(1) into the sum of the polygon area Q̃0, the trapezoidal areas
Qj for j � 1 (Q1 and Qn are highlighted in the figure),
and the triangular area of width Tn over the time interval
(tn, t

0
n). From Figure 2, we see that Qn can be calculated

as the difference between the area of the isosceles triangle
whose base connects the points tn�1 and t

0
n and the area of

the isosceles triangle with base connecting the points tn and
t
0
n. Defining Yn = tn � tn�1 to be the nth interarrival time,

it follows that

Qn =
1

2
(Tn + Yn)2 � 1

2
T

2
n = YnTn + Y

2
n /2. (2)

With N(T ) = max{n|tn  T } denoting the number of
updates by time T , we will say a status updating system is
stationary and ergodic if (Yn, Tn) is a stationary sequence
with marginal distribution identical to (Y, T ), and N(T )/T !
1/E[Y ] and 1

N(T )

PN(T )
j=1 Qj ! E[Q] with probability 1 as

T ! 1.
For a stationary ergodic updating system in which Y is

the interarrival time between delivered updates and T is the
system time of such a delivered packet, it follows that the
time-average AoI � = limT !1 h�iT satisfies

� =
E[Qn]

E[Yn]
=

E[YnTn] + E
⇥
Y

2
n

⇤
/2

E[Yn]
. (3)

We note this decomposition of the area under the age
process is not unique. As can be seen in Fig. 2, an alternate
approach [18] shows

Qn = DnTn�1 + D
2
n/2 (4)

where Dn = t
0
n � t

0
n�1 is the nth inter-departure time. With

this decomposition, a stationary ergodic updating system will
have average age

� =
E[Qn]

E[Dn]
=

E[DnTn�1] + E
⇥
D

2
n/2

⇤

E[Dn]
. (5)

Both (3) and (5) can be applied to a broad class of service

systems, including both lossless FCFS systems as well as lossy
last-come-first-served (LCFS) systems in which updates are
preempted and discarded. Furthermore, they make no specific
assumptions regarding other traffic that might share the system
with the update packets of interest.

However, despite their apparent simplicity, exact analysis
of the age � can be challenging. With respect to (3), a large
interarrival time Yn allows the queue to empty, yielding a small
waiting time and typically a small system time Tn. That is, Yn

and Tn tend to be negatively correlated and this complicates
the evaluation of E[TnYn].

B. Peak Age

The challenge in evaluating E[TY ] prompted the introduc-
tion in [19] of peak age of information (PAoI), an alternate
(and generally more tractable) age metric. Referring to Fig. 2,
we observe that the age process �(t) reaches a peak

An = Tn�1 + Dn (6)

the instant before the service completion at time t
0
n. As an

alternative to the (possibly challenging) computation of the
average age, [19] proposed the average peak age of informa-
tion (PAoI)

�(p) = lim
T !1

1

N(T )

N(T )X

n=1

An (7)

Under mild ergodicity assumptions, it follows that the PAoI is

�(p) = E[A] = E[Tn�1] + E[Dn]. (8)

Hence PAoI avoids the computation of E[TY ].
Like the average age, the peak age captures the key char-

acteristics of the age process. Specifically, if the system is
lightly loaded, then the average inter-departure time E[D] will
be large; conversely as the system load gets heavy, the average
system time E[T ] will become large. Here we also note there
is more than one way to calculate PAoI. Inspection of Fig. 2
reveals that An = Yn + Tn. It follows that PAoI is also
�(p) = E[Y ] + E[T ], which is the decomposition in [18].

For single-server queues, it has been observed [20] that by
defining t

0
�1 = 0 and T�1 = �(0) that

�(t) = Tn�1 + (t � t
0
n�1), t 2 (t0n�1, t

0
n). (9)

for n = 0, 1, 2, . . .. Thus the sample path of �(t) is completely
determined by the point process {(t0n, Tn) : n = 0, 1, . . .}.
Since the departure times t

0
n can be reconstructed from the Dn

inter-departure sequence and (6) implies Dn = An�Tn�1, the
sequence of pairs (Tn�1, An) is also sufficient to reconstruct
the age process �(t). As noted in [20], this shows that the
age peaks An are a fundamental characterization of the age
process.

C. Stochastic Hybrid Systems for AoI Analysis

A stochastic hybrid system (SHS) [21] was shown in [22]
to provide an alternate approach for average age analysis.
In the SHS approach, the network shown in Fig. 1(a) has a
hybrid state [q(t),x(t)] such that x(t) 2 R1⇥n and q(t) 2
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The initial motivation for [4] came from vehicular safety
messaging. In particular, [14] looked at minimizing the age
of safety messages over a CSMA network of connected cars.
For small CSMA contention window sizes, it was observed in
simulation that the minimum age could be approached using
a gradient descent like algorithm. Over a random graph of
vehicular nodes in a DSRC network, a round robin schedule
was shown to lead to an average status-age that is smaller
under the condition that nodes’ updates piggyback each others’
updates [15]. Note that while both [14] and [15] used the
phrase system age of information, the optimization metric was
indeed the average age of status updates.

These simulation studies of vehicular updating [14], [15]
prompted the AoI analysis in single-source single-server
queues [4]. In contrast to the prior work [10], [12], [13] based
on status update age, [4] focused on the impact of random
service times on the age of delivered updates and showed that
minimizing age required balancing the rate of updates against
congestion. The takeaway message was that both the update
arrivals and the service system could be designed, tuned, and
even controlled to minimize the age.

This survey focuses on the large number of contributions
to AoI analysis that followed [4]. Section II introduces the
age process and associated age metrics, and basic methods
for the analysis of AoI. Section III summarizes AoI results
in single-server queues, in order to demonstrate how AoI is
influenced by the update arrival rate, the queue discipline, and
packet management schemes designed explicitly to optimize
freshness. This leads to a review of queueing networks, with
a focus on scheduling updates of multiple sources at multiple
servers in Section IV. This is followed in Section V by the
study of energy-constrained updating. Here the emphasis is
on energy harvesting systems in which updates by a sensor
are constrained by its harvesting process. In this area, we
examine generate-at-will sources that can generate a fresh up-
date whenever they wish. Generate-at-will models are further
explored in the context of sampling, estimation and control in
Section VI. This is followed by a study of wireless networks
in Section VII and a discussion of various applications of AoI
in Section VIII. Finally, the conclusion in Section IX discusses
potential application areas of AoI.

II. AOI METRICS AND ANALYSIS

As depicted in Figure 1(a), the canonical updating model
has a source that submits fresh updates to a network that
delivers those updates to a destination monitor. In a complex
system, there may be additional monitors/observers in the
network that serve to track the ages of updates in the network.
For example, Figure 1(a) depicts an additional monitor that
observes fresh updates as they enter the network.

These fresh updates are submitted at times t1, t2, . . . and
this induces the AoI process �1(t) shown in Figure 1(b).
Specifically, �1(t) is the age of the most recent update seen
by a monitor at the input to the network. Because the updates
are fresh, �1(t) is reset to zero at each ti. However, in the
absence of a new update, the age �1(t) grows at unit rate. If
the source in Fig. 1 submits fresh updates as a renewal point
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Fig. 1. (a) Fresh updates from a source pass through the network to a
destination monitor. Monitor 1 (marked by •) sees fresh update packets at
the network access link. (b) Since Monitor 1 sees fresh updates as a point
process at times ti, its age process �1(t) is reset to zero at times tj . Since the
destination monitor sees updates that are delivered at times t0j after traveling
through the network, its age process �2(t) is reset to �2(t0i) = t0j � tj ,
which is the age of update j when it is delivered.

process, the AoI �1(t) is simply the age (also known as the
backwards excess) [16], [17] of the renewal process.
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0
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0
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0
j to �2(t0j) = t

0
j�tj , which is the age of the jth
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of a newer update, �2(t) grows at unit rate. Hence the age
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the average peak age metric and then the stochastic hybrid
systems (SHS) approach to AoI analysis. This is followed by
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A. Time-Average Age
Initial work on age has focused on applying graphical

methods to sawtooth age waveforms �(t) to evaluate the time-
average AoI

h�iT =
1

T

Z T

0
�(t)dt. (1)

in the limit of large T . While this time average is often called
the AoI, this work employs AoI and age as synonyms that
refer to the process �(t).
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Figure 2 shows a sawtooth sample path of an age process
�(t) in greater detail. For simplicity of exposition, the length
of the observation interval is chosen to be T = t

0
n, as depicted

in Figure 2. We decompose the area defined by the integral
(1) into the sum of the polygon area Q̃0, the trapezoidal areas
Qj for j � 1 (Q1 and Qn are highlighted in the figure),
and the triangular area of width Tn over the time interval
(tn, t

0
n). From Figure 2, we see that Qn can be calculated

as the difference between the area of the isosceles triangle
whose base connects the points tn�1 and t

0
n and the area of

the isosceles triangle with base connecting the points tn and
t
0
n. Defining Yn = tn � tn�1 to be the nth interarrival time,

it follows that

Qn =
1

2
(Tn + Yn)2 � 1

2
T

2
n = YnTn + Y

2
n /2. (2)

With N(T ) = max{n|tn  T } denoting the number of
updates by time T , we will say a status updating system is
stationary and ergodic if (Yn, Tn) is a stationary sequence
with marginal distribution identical to (Y, T ), and N(T )/T !
1/E[Y ] and 1

N(T )

PN(T )
j=1 Qj ! E[Q] with probability 1 as

T ! 1.
For a stationary ergodic updating system in which Y is

the interarrival time between delivered updates and T is the
system time of such a delivered packet, it follows that the
time-average AoI � = limT !1 h�iT satisfies

� =
E[Qn]

E[Yn]
=

E[YnTn] + E
⇥
Y

2
n

⇤
/2

E[Yn]
. (3)

We note this decomposition of the area under the age
process is not unique. As can be seen in Fig. 2, an alternate
approach [18] shows

Qn = DnTn�1 + D
2
n/2 (4)

where Dn = t
0
n � t

0
n�1 is the nth inter-departure time. With

this decomposition, a stationary ergodic updating system will
have average age

� =
E[Qn]

E[Dn]
=

E[DnTn�1] + E
⇥
D

2
n/2

⇤

E[Dn]
. (5)

Both (3) and (5) can be applied to a broad class of service

systems, including both lossless FCFS systems as well as lossy
last-come-first-served (LCFS) systems in which updates are
preempted and discarded. Furthermore, they make no specific
assumptions regarding other traffic that might share the system
with the update packets of interest.

However, despite their apparent simplicity, exact analysis
of the age � can be challenging. With respect to (3), a large
interarrival time Yn allows the queue to empty, yielding a small
waiting time and typically a small system time Tn. That is, Yn

and Tn tend to be negatively correlated and this complicates
the evaluation of E[TnYn].

B. Peak Age

The challenge in evaluating E[TY ] prompted the introduc-
tion in [19] of peak age of information (PAoI), an alternate
(and generally more tractable) age metric. Referring to Fig. 2,
we observe that the age process �(t) reaches a peak

An = Tn�1 + Dn (6)

the instant before the service completion at time t
0
n. As an

alternative to the (possibly challenging) computation of the
average age, [19] proposed the average peak age of informa-
tion (PAoI)

�(p) = lim
T !1

1

N(T )

N(T )X

n=1

An (7)

Under mild ergodicity assumptions, it follows that the PAoI is

�(p) = E[A] = E[Tn�1] + E[Dn]. (8)

Hence PAoI avoids the computation of E[TY ].
Like the average age, the peak age captures the key char-

acteristics of the age process. Specifically, if the system is
lightly loaded, then the average inter-departure time E[D] will
be large; conversely as the system load gets heavy, the average
system time E[T ] will become large. Here we also note there
is more than one way to calculate PAoI. Inspection of Fig. 2
reveals that An = Yn + Tn. It follows that PAoI is also
�(p) = E[Y ] + E[T ], which is the decomposition in [18].

For single-server queues, it has been observed [20] that by
defining t

0
�1 = 0 and T�1 = �(0) that

�(t) = Tn�1 + (t � t
0
n�1), t 2 (t0n�1, t

0
n). (9)

for n = 0, 1, 2, . . .. Thus the sample path of �(t) is completely
determined by the point process {(t0n, Tn) : n = 0, 1, . . .}.
Since the departure times t

0
n can be reconstructed from the Dn

inter-departure sequence and (6) implies Dn = An�Tn�1, the
sequence of pairs (Tn�1, An) is also sufficient to reconstruct
the age process �(t). As noted in [20], this shows that the
age peaks An are a fundamental characterization of the age
process.

C. Stochastic Hybrid Systems for AoI Analysis

A stochastic hybrid system (SHS) [21] was shown in [22]
to provide an alternate approach for average age analysis.
In the SHS approach, the network shown in Fig. 1(a) has a
hybrid state [q(t),x(t)] such that x(t) 2 R1⇥n and q(t) 2
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n. Defining Yn = tn � tn�1 to be the nth interarrival time,

it follows that

Qn =
1

2
(Tn + Yn)2 � 1

2
T

2
n = YnTn + Y

2
n /2. (2)

With N(T ) = max{n|tn  T } denoting the number of
updates by time T , we will say a status updating system is
stationary and ergodic if (Yn, Tn) is a stationary sequence
with marginal distribution identical to (Y, T ), and N(T )/T !
1/E[Y ] and 1

N(T )

PN(T )
j=1 Qj ! E[Q] with probability 1 as

T ! 1.
For a stationary ergodic updating system in which Y is

the interarrival time between delivered updates and T is the
system time of such a delivered packet, it follows that the
time-average AoI � = limT !1 h�iT satisfies

� =
E[Qn]

E[Yn]
=

E[YnTn] + E
⇥
Y

2
n

⇤
/2

E[Yn]
. (3)

We note this decomposition of the area under the age
process is not unique. As can be seen in Fig. 2, an alternate
approach [18] shows

Qn = DnTn�1 + D
2
n/2 (4)

where Dn = t
0
n � t

0
n�1 is the nth inter-departure time. With

this decomposition, a stationary ergodic updating system will
have average age

� =
E[Qn]

E[Dn]
=

E[DnTn�1] + E
⇥
D

2
n/2

⇤

E[Dn]
. (5)

Both (3) and (5) can be applied to a broad class of service

systems, including both lossless FCFS systems as well as lossy
last-come-first-served (LCFS) systems in which updates are
preempted and discarded. Furthermore, they make no specific
assumptions regarding other traffic that might share the system
with the update packets of interest.

However, despite their apparent simplicity, exact analysis
of the age � can be challenging. With respect to (3), a large
interarrival time Yn allows the queue to empty, yielding a small
waiting time and typically a small system time Tn. That is, Yn

and Tn tend to be negatively correlated and this complicates
the evaluation of E[TnYn].

B. Peak Age

The challenge in evaluating E[TY ] prompted the introduc-
tion in [19] of peak age of information (PAoI), an alternate
(and generally more tractable) age metric. Referring to Fig. 2,
we observe that the age process �(t) reaches a peak

An = Tn�1 + Dn (6)

the instant before the service completion at time t
0
n. As an

alternative to the (possibly challenging) computation of the
average age, [19] proposed the average peak age of informa-
tion (PAoI)

�(p) = lim
T !1

1

N(T )

N(T )X

n=1

An (7)

Under mild ergodicity assumptions, it follows that the PAoI is

�(p) = E[A] = E[Tn�1] + E[Dn]. (8)

Hence PAoI avoids the computation of E[TY ].
Like the average age, the peak age captures the key char-

acteristics of the age process. Specifically, if the system is
lightly loaded, then the average inter-departure time E[D] will
be large; conversely as the system load gets heavy, the average
system time E[T ] will become large. Here we also note there
is more than one way to calculate PAoI. Inspection of Fig. 2
reveals that An = Yn + Tn. It follows that PAoI is also
�(p) = E[Y ] + E[T ], which is the decomposition in [18].

For single-server queues, it has been observed [20] that by
defining t

0
�1 = 0 and T�1 = �(0) that

�(t) = Tn�1 + (t � t
0
n�1), t 2 (t0n�1, t

0
n). (9)

for n = 0, 1, 2, . . .. Thus the sample path of �(t) is completely
determined by the point process {(t0n, Tn) : n = 0, 1, . . .}.
Since the departure times t

0
n can be reconstructed from the Dn

inter-departure sequence and (6) implies Dn = An�Tn�1, the
sequence of pairs (Tn�1, An) is also sufficient to reconstruct
the age process �(t). As noted in [20], this shows that the
age peaks An are a fundamental characterization of the age
process.

C. Stochastic Hybrid Systems for AoI Analysis

A stochastic hybrid system (SHS) [21] was shown in [22]
to provide an alternate approach for average age analysis.
In the SHS approach, the network shown in Fig. 1(a) has a
hybrid state [q(t),x(t)] such that x(t) 2 R1⇥n and q(t) 2
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preempted and discarded. Furthermore, they make no specific
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However, despite their apparent simplicity, exact analysis
of the age � can be challenging. With respect to (3), a large
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Like the average age, the peak age captures the key char-

acteristics of the age process. Specifically, if the system is
lightly loaded, then the average inter-departure time E[D] will
be large; conversely as the system load gets heavy, the average
system time E[T ] will become large. Here we also note there
is more than one way to calculate PAoI. Inspection of Fig. 2
reveals that An = Yn + Tn. It follows that PAoI is also
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For single-server queues, it has been observed [20] that by
defining t

0
�1 = 0 and T�1 = �(0) that

�(t) = Tn�1 + (t � t
0
n�1), t 2 (t0n�1, t

0
n). (9)

for n = 0, 1, 2, . . .. Thus the sample path of �(t) is completely
determined by the point process {(t0n, Tn) : n = 0, 1, . . .}.
Since the departure times t

0
n can be reconstructed from the Dn

inter-departure sequence and (6) implies Dn = An�Tn�1, the
sequence of pairs (Tn�1, An) is also sufficient to reconstruct
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A stochastic hybrid system (SHS) [21] was shown in [22]
to provide an alternate approach for average age analysis.
In the SHS approach, the network shown in Fig. 1(a) has a
hybrid state [q(t),x(t)] such that x(t) 2 R1⇥n and q(t) 2

3

�(t)

t

A0

A1
A2

A3

t0 t1 t
0
0 t2 t3 t

0
1 t

0
2

Q̃0 Q1 Q2

Y1 T1

T0 D1

tn�1 t
0
n�1 tn t

0
n

An

Yn Tn

Tn�1 Dn

Tn

Qn

Fig. 2. An age sample path: updates from a source arrive at times t0, t1, . . .
and are received at the monitor at times T 0

0, T1.0 . . .. For the nth delivered
update, Yn, Tn and Dn are the interarrival, system and inter-departure times,
and An is the corresponding age peak.

Figure 2 shows a sawtooth sample path of an age process
�(t) in greater detail. For simplicity of exposition, the length
of the observation interval is chosen to be T = t

0
n, as depicted

in Figure 2. We decompose the area defined by the integral
(1) into the sum of the polygon area Q̃0, the trapezoidal areas
Qj for j � 1 (Q1 and Qn are highlighted in the figure),
and the triangular area of width Tn over the time interval
(tn, t

0
n). From Figure 2, we see that Qn can be calculated

as the difference between the area of the isosceles triangle
whose base connects the points tn�1 and t

0
n and the area of

the isosceles triangle with base connecting the points tn and
t
0
n. Defining Yn = tn � tn�1 to be the nth interarrival time,

it follows that

Qn =
1

2
(Tn + Yn)2 � 1

2
T

2
n = YnTn + Y

2
n /2. (2)

With N(T ) = max{n|tn  T } denoting the number of
updates by time T , we will say a status updating system is
stationary and ergodic if (Yn, Tn) is a stationary sequence
with marginal distribution identical to (Y, T ), and N(T )/T !
1/E[Y ] and 1

N(T )

PN(T )
j=1 Qj ! E[Q] with probability 1 as

T ! 1.
For a stationary ergodic updating system in which Y is

the interarrival time between delivered updates and T is the
system time of such a delivered packet, it follows that the
time-average AoI � = limT !1 h�iT satisfies

� =
E[Qn]

E[Yn]
=

E[YnTn] + E
⇥
Y

2
n

⇤
/2

E[Yn]
. (3)

We note this decomposition of the area under the age
process is not unique. As can be seen in Fig. 2, an alternate
approach [18] shows

Qn = DnTn�1 + D
2
n/2 (4)

where Dn = t
0
n � t

0
n�1 is the nth inter-departure time. With

this decomposition, a stationary ergodic updating system will
have average age

� =
E[Qn]

E[Dn]
=

E[DnTn�1] + E
⇥
D

2
n/2

⇤

E[Dn]
. (5)

Both (3) and (5) can be applied to a broad class of service

systems, including both lossless FCFS systems as well as lossy
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the evaluation of E[TnYn].
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Hence PAoI avoids the computation of E[TY ].
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acteristics of the age process. Specifically, if the system is
lightly loaded, then the average inter-departure time E[D] will
be large; conversely as the system load gets heavy, the average
system time E[T ] will become large. Here we also note there
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reveals that An = Yn + Tn. It follows that PAoI is also
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sequence of pairs (Tn�1, An) is also sufficient to reconstruct
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age peaks An are a fundamental characterization of the age
process.
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to provide an alternate approach for average age analysis.
In the SHS approach, the network shown in Fig. 1(a) has a
hybrid state [q(t),x(t)] such that x(t) 2 R1⇥n and q(t) 2

2

The initial motivation for [4] came from vehicular safety
messaging. In particular, [14] looked at minimizing the age
of safety messages over a CSMA network of connected cars.
For small CSMA contention window sizes, it was observed in
simulation that the minimum age could be approached using
a gradient descent like algorithm. Over a random graph of
vehicular nodes in a DSRC network, a round robin schedule
was shown to lead to an average status-age that is smaller
under the condition that nodes’ updates piggyback each others’
updates [15]. Note that while both [14] and [15] used the
phrase system age of information, the optimization metric was
indeed the average age of status updates.

These simulation studies of vehicular updating [14], [15]
prompted the AoI analysis in single-source single-server
queues [4]. In contrast to the prior work [10], [12], [13] based
on status update age, [4] focused on the impact of random
service times on the age of delivered updates and showed that
minimizing age required balancing the rate of updates against
congestion. The takeaway message was that both the update
arrivals and the service system could be designed, tuned, and
even controlled to minimize the age.

This survey focuses on the large number of contributions
to AoI analysis that followed [4]. Section II introduces the
age process and associated age metrics, and basic methods
for the analysis of AoI. Section III summarizes AoI results
in single-server queues, in order to demonstrate how AoI is
influenced by the update arrival rate, the queue discipline, and
packet management schemes designed explicitly to optimize
freshness. This leads to a review of queueing networks, with
a focus on scheduling updates of multiple sources at multiple
servers in Section IV. This is followed in Section V by the
study of energy-constrained updating. Here the emphasis is
on energy harvesting systems in which updates by a sensor
are constrained by its harvesting process. In this area, we
examine generate-at-will sources that can generate a fresh up-
date whenever they wish. Generate-at-will models are further
explored in the context of sampling, estimation and control in
Section VI. This is followed by a study of wireless networks
in Section VII and a discussion of various applications of AoI
in Section VIII. Finally, the conclusion in Section IX discusses
potential application areas of AoI.

II. AOI METRICS AND ANALYSIS

As depicted in Figure 1(a), the canonical updating model
has a source that submits fresh updates to a network that
delivers those updates to a destination monitor. In a complex
system, there may be additional monitors/observers in the
network that serve to track the ages of updates in the network.
For example, Figure 1(a) depicts an additional monitor that
observes fresh updates as they enter the network.

These fresh updates are submitted at times t1, t2, . . . and
this induces the AoI process �1(t) shown in Figure 1(b).
Specifically, �1(t) is the age of the most recent update seen
by a monitor at the input to the network. Because the updates
are fresh, �1(t) is reset to zero at each ti. However, in the
absence of a new update, the age �1(t) grows at unit rate. If
the source in Fig. 1 submits fresh updates as a renewal point
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Fig. 1. (a) Fresh updates from a source pass through the network to a
destination monitor. Monitor 1 (marked by •) sees fresh update packets at
the network access link. (b) Since Monitor 1 sees fresh updates as a point
process at times ti, its age process �1(t) is reset to zero at times tj . Since the
destination monitor sees updates that are delivered at times t0j after traveling
through the network, its age process �2(t) is reset to �2(t0i) = t0j � tj ,
which is the age of update j when it is delivered.

process, the AoI �1(t) is simply the age (also known as the
backwards excess) [16], [17] of the renewal process.

These updates pass through a network and are delivered to
the destination monitor at corresponding times t

0
1, t

0
2, . . .. Con-

sequently, the AoI process �2(t) at the destination monitor is
reset at time t

0
j to �2(t0j) = t

0
j�tj , which is the age of the jth

update when it is delivered. Once again, absent the delivery
of a newer update, �2(t) grows at unit rate. Hence the age
processes �1(t) and �2(t) have the characteristic sawtooth
patterns shown in Figure 1(b). Furthermore, any other monitor
in the network that sees updates arrive some time after they
are fresh, will have a sawtooth age process �(t) resembling
that of �2(t).

In the rest of this section, we describe three approaches
to AoI analysis. We start with with methods that analyze the
limiting time-average age by graphical decomposition of the
area under the sawtooth function �(t). We next introduce
the average peak age metric and then the stochastic hybrid
systems (SHS) approach to AoI analysis. This is followed by
a discussion of nonlinear age penalty functions and functionals
of the age process that are intended to capture the role of age
in different classes of applications.

A. Time-Average Age
Initial work on age has focused on applying graphical

methods to sawtooth age waveforms �(t) to evaluate the time-
average AoI

h�iT =
1

T

Z T

0
�(t)dt. (1)

in the limit of large T . While this time average is often called
the AoI, this work employs AoI and age as synonyms that
refer to the process �(t).
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Figure 2 shows a sawtooth sample path of an age process
�(t) in greater detail. For simplicity of exposition, the length
of the observation interval is chosen to be T = t

0
n, as depicted

in Figure 2. We decompose the area defined by the integral
(1) into the sum of the polygon area Q̃0, the trapezoidal areas
Qj for j � 1 (Q1 and Qn are highlighted in the figure),
and the triangular area of width Tn over the time interval
(tn, t

0
n). From Figure 2, we see that Qn can be calculated

as the difference between the area of the isosceles triangle
whose base connects the points tn�1 and t

0
n and the area of

the isosceles triangle with base connecting the points tn and
t
0
n. Defining Yn = tn � tn�1 to be the nth interarrival time,

it follows that
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With N(T ) = max{n|tn  T } denoting the number of
updates by time T , we will say a status updating system is
stationary and ergodic if (Yn, Tn) is a stationary sequence
with marginal distribution identical to (Y, T ), and N(T )/T !
1/E[Y ] and 1

N(T )

PN(T )
j=1 Qj ! E[Q] with probability 1 as

T ! 1.
For a stationary ergodic updating system in which Y is

the interarrival time between delivered updates and T is the
system time of such a delivered packet, it follows that the
time-average AoI � = limT !1 h�iT satisfies
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We note this decomposition of the area under the age
process is not unique. As can be seen in Fig. 2, an alternate
approach [18] shows

Qn = DnTn�1 + D
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where Dn = t
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this decomposition, a stationary ergodic updating system will
have average age
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Both (3) and (5) can be applied to a broad class of service

systems, including both lossless FCFS systems as well as lossy
last-come-first-served (LCFS) systems in which updates are
preempted and discarded. Furthermore, they make no specific
assumptions regarding other traffic that might share the system
with the update packets of interest.

However, despite their apparent simplicity, exact analysis
of the age � can be challenging. With respect to (3), a large
interarrival time Yn allows the queue to empty, yielding a small
waiting time and typically a small system time Tn. That is, Yn

and Tn tend to be negatively correlated and this complicates
the evaluation of E[TnYn].

B. Peak Age

The challenge in evaluating E[TY ] prompted the introduc-
tion in [19] of peak age of information (PAoI), an alternate
(and generally more tractable) age metric. Referring to Fig. 2,
we observe that the age process �(t) reaches a peak

An = Tn�1 + Dn (6)

the instant before the service completion at time t
0
n. As an

alternative to the (possibly challenging) computation of the
average age, [19] proposed the average peak age of informa-
tion (PAoI)
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Under mild ergodicity assumptions, it follows that the PAoI is

�(p) = E[A] = E[Tn�1] + E[Dn]. (8)

Hence PAoI avoids the computation of E[TY ].
Like the average age, the peak age captures the key char-

acteristics of the age process. Specifically, if the system is
lightly loaded, then the average inter-departure time E[D] will
be large; conversely as the system load gets heavy, the average
system time E[T ] will become large. Here we also note there
is more than one way to calculate PAoI. Inspection of Fig. 2
reveals that An = Yn + Tn. It follows that PAoI is also
�(p) = E[Y ] + E[T ], which is the decomposition in [18].

For single-server queues, it has been observed [20] that by
defining t
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�1 = 0 and T�1 = �(0) that
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for n = 0, 1, 2, . . .. Thus the sample path of �(t) is completely
determined by the point process {(t0n, Tn) : n = 0, 1, . . .}.
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Figure 2 shows a sawtooth sample path of an age process
�(t) in greater detail. For simplicity of exposition, the length
of the observation interval is chosen to be T = t

0
n, as depicted

in Figure 2. We decompose the area defined by the integral
(1) into the sum of the polygon area Q̃0, the trapezoidal areas
Qj for j � 1 (Q1 and Qn are highlighted in the figure),
and the triangular area of width Tn over the time interval
(tn, t

0
n). From Figure 2, we see that Qn can be calculated

as the difference between the area of the isosceles triangle
whose base connects the points tn�1 and t

0
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with marginal distribution identical to (Y, T ), and N(T )/T !
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process is not unique. As can be seen in Fig. 2, an alternate
approach [18] shows
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Both (3) and (5) can be applied to a broad class of service
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last-come-first-served (LCFS) systems in which updates are
preempted and discarded. Furthermore, they make no specific
assumptions regarding other traffic that might share the system
with the update packets of interest.
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and Tn tend to be negatively correlated and this complicates
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B. Peak Age
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Large interarrival time allows queue to be empty, thus, the waiting time can be 
small, causing small system time Tn. 
Yn and Tn are negatively correlated which complicates the calculation of E[YnTn]
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i.i.d interarrival times with expected value E[Y]
λ=1/ E[Y] : arrival rate
E[S] : expected service time
µ=1/ E[S] : service rate
ρ = λ/ µ : offered load

For FCFS M/M/1 queue the average is
The optimal age is achieved for  

7

in order to characterize elementary properties of the average
age. This is followed by Section III-B, which uses zero-wait
systems to derive age lower bounds, and Section III-C. which
examines age in queues that serve multiple sources.

A. Age in Single-source Single-server Queues
This review is based chiefly on AoI results in [4], [18],

[20]. We start with variations on non-preemptive and pre-
emptive single server queues, for which the representation
in [20] of the age process �(t) by the point process
{(t0n, Tn) : n = 0, 1, . . .} has led to a panoply of results, in-
cluding the extension to distributional results for the stationary
age �(t) and the peak age An and also generalization to
GI/GI/1 queues.

Throughout this discussion, each server has expected service
time E[S] and each service system has i.i.d. interarrival times
with expected value E[Y ]. For consistency of presentation,
� = 1/ E[Y ] is the arrival rate, µ = 1/ E[S] is the service
rate, and the system has offered load ⇢ = �/µ. Numerical
comparisons will be presented in terms of the load ⇢ with
1/µ = 1.

For the FCFS M/M/1 queue with offered load ⇢, it was
shown [4] using (3) that the average age is

�M/M/1 =
1

µ

✓
1 +

1

⇢
+

⇢
2

1 � ⇢

◆
. (22)

For fixed service rate µ, the age-optimal utilization ⇢
⇤ satisfies

⇢
4 � 2⇢

3 + ⇢
2 � 2⇢ + 1 = 0 and thus ⇢

⇤ ⇡ 0.53. The server
is idle ⇡ 47% of the time. The optimal age is achieved by
choosing a � that biases the server towards being busy only
slightly more than being idle. Note that we would want ⇢ close
to 1 if we wanted to maximize the throughput, which is the
number of packets delivered to the monitors every second. If
we instead wanted to minimize packet delay, that is minimize
the system time of a packet, we would want ⇢ to be close to 0.
Analysis of the M/D/1 queue [20] and the D/M/1 queue [22]
yielded
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where, in terms of the Lambert-W function, W(·),
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e
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Fig. 5 presents age comparisons of the M/M/1, M/D/1,
and D/M/1 queues from [4]. For each queue there is an
age-minimizing offered load. Among these FCFS queues,
we observe that for each value of system load, D/M/1 is
better than M/D/1, which is better than M/M/1. At low load,
randomness in the interarrivals dominates the average status-
age. At high load, M/D/1 and D/M/1 substantially outperform
M/M/1 because the determinism in either arrivals or service
helps to reduce the average queue length. For each queue, we
observe a unique value of ⇢ that minimizes the average age.

What these FCFS queues make apparent is that the arrival
rate can be optimized to balance update frequency against the

possibility of congestion. This prompted the study of lossy
queues that may discard an arriving update while the server
was busy or replace an older waiting update with a fresher
arrival [18], [19], [67]. These strategies, identified as packet
management [18], [19], include the M/M/1/1 queue that blocks
and clears a new arrival while the server is busy, the M/M/1/2
queue that will queue one waiting packet but blocks an arrival
when the waiting space is occupied, and the M/M/1/2⇤ queue
that will preempt a waiting packet with a fresh arrival.4

Another system in this category is the LCFS queue with
preemption in service that permits a new arrival to preempt an
update in service. Extending the notation introduced in [18],
we call this an M/M/1⇤ queue. These systems were shown
[18] to achieve average ages
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µ

✓
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⇢
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, (26a)
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From (26), simple algebra will verify that

�M/M/1⇤  �M/M/1/1, (27a)
�M/M/1⇤  �M/M/1/2⇤  �M/M/1/2. (27b)

However, the age performance of the M/M/1/1 system is
less easy to classify. Specifically, as ⇢ increases, the relative
performance of the M/M/1/1 system improves. In terms of the
golden ratio ⇢

⇤ = (1 +
p

5)/2, we have that

⇢  1/⇢
⇤ ) �M/M/1/2  �M/M/1/1; (28a)

1

⇢⇤
 ⇢  ⇢

⇤ ) �M/M/1/2⇤  �M/M/1/1  �M/M/1/2; (28b)

⇢
⇤  ⇢ ) �M/M/1/1  �M/M/1/2⇤ . (28c)

Figure 6 compares the average age for these queues. At low
load, all of these queues achieve essentially the same average
age (1 + 1/⇢)/µ as the M/M/1 and M/D/1 FCFS queues
evaluated in Fig. 2. When the queue is almost always empty,

4While Kendall notation A/S/c is consistently used to signify the Arrival
process, the Service time, and the number of servers c, there is no consensus
on a fourth entry for these systems. Here we (mostly) follow [18], with the
fourth entry classifying how arrivals access the servers: ·/·/c is a c server
system with an unbounded queue; ·/·/c/m indicates a system capacity of m
updates (i.e. an FCFS waiting room of size m� c) with new arrivals blocked
when the waiting room is full, and ·/·/c/m⇤ with m = c+1, indicates a single
packet waiting room with preemption in waiting. We then add the convention
·/·/c⇤ to signify that a new arrival preempts the oldest update in service. (Since
preempted packets are discarded, the waiting room becomes irrelevant.) Note
that in [22], the M/M/1⇤ and M/M/1/2⇤ queues were called LCFS-S and
LCFS-W, with S and W denoting preemption, S in Service and W in Waiting.
In both [18], [22], it was assumed that obsolete updates were discarded. In
[20], the fourth entry was the size of the waiting room, LCFS designated
queues in which a new arrival moved in front of any waiting updates and
the prefixes P and NP indicated whether the service was preemptive (P) or
Non-Preemptive (NP), i.e. does the new arrival go immediately into service or
simply to the head of the waiting line. [20] also used suffixes (C) and (D) to
indicate whether the queue was work Conserving or whether obsolete updates
were Discarded. Thus the M/M/1/2⇤ queue in [18] was the M/M/1 LCFS-W
queue in [22] and was the M/M/1/1 NP-LCFS (D) queue in [20].
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in order to characterize elementary properties of the average
age. This is followed by Section III-B, which uses zero-wait
systems to derive age lower bounds, and Section III-C. which
examines age in queues that serve multiple sources.

A. Age in Single-source Single-server Queues
This review is based chiefly on AoI results in [4], [18],

[20]. We start with variations on non-preemptive and pre-
emptive single server queues, for which the representation
in [20] of the age process �(t) by the point process
{(t0n, Tn) : n = 0, 1, . . .} has led to a panoply of results, in-
cluding the extension to distributional results for the stationary
age �(t) and the peak age An and also generalization to
GI/GI/1 queues.

Throughout this discussion, each server has expected service
time E[S] and each service system has i.i.d. interarrival times
with expected value E[Y ]. For consistency of presentation,
� = 1/ E[Y ] is the arrival rate, µ = 1/ E[S] is the service
rate, and the system has offered load ⇢ = �/µ. Numerical
comparisons will be presented in terms of the load ⇢ with
1/µ = 1.

For the FCFS M/M/1 queue with offered load ⇢, it was
shown [4] using (3) that the average age is
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1
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2
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◆
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For fixed service rate µ, the age-optimal utilization ⇢
⇤ satisfies

⇢
4 � 2⇢

3 + ⇢
2 � 2⇢ + 1 = 0 and thus ⇢

⇤ ⇡ 0.53. The server
is idle ⇡ 47% of the time. The optimal age is achieved by
choosing a � that biases the server towards being busy only
slightly more than being idle. Note that we would want ⇢ close
to 1 if we wanted to maximize the throughput, which is the
number of packets delivered to the monitors every second. If
we instead wanted to minimize packet delay, that is minimize
the system time of a packet, we would want ⇢ to be close to 0.
Analysis of the M/D/1 queue [20] and the D/M/1 queue [22]
yielded

�M/D/1 =
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µ
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where, in terms of the Lambert-W function, W(·),
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. (25)

Fig. 5 presents age comparisons of the M/M/1, M/D/1,
and D/M/1 queues from [4]. For each queue there is an
age-minimizing offered load. Among these FCFS queues,
we observe that for each value of system load, D/M/1 is
better than M/D/1, which is better than M/M/1. At low load,
randomness in the interarrivals dominates the average status-
age. At high load, M/D/1 and D/M/1 substantially outperform
M/M/1 because the determinism in either arrivals or service
helps to reduce the average queue length. For each queue, we
observe a unique value of ⇢ that minimizes the average age.

What these FCFS queues make apparent is that the arrival
rate can be optimized to balance update frequency against the

possibility of congestion. This prompted the study of lossy
queues that may discard an arriving update while the server
was busy or replace an older waiting update with a fresher
arrival [18], [19], [67]. These strategies, identified as packet
management [18], [19], include the M/M/1/1 queue that blocks
and clears a new arrival while the server is busy, the M/M/1/2
queue that will queue one waiting packet but blocks an arrival
when the waiting space is occupied, and the M/M/1/2⇤ queue
that will preempt a waiting packet with a fresh arrival.4

Another system in this category is the LCFS queue with
preemption in service that permits a new arrival to preempt an
update in service. Extending the notation introduced in [18],
we call this an M/M/1⇤ queue. These systems were shown
[18] to achieve average ages
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✓
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⇢
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, (26a)
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, (26b)
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(26c)

�M/M/1/2 =
1

µ

✓
1 +

1

⇢
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2⇢
2

1 + ⇢ + ⇢2
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. (26d)

From (26), simple algebra will verify that

�M/M/1⇤  �M/M/1/1, (27a)
�M/M/1⇤  �M/M/1/2⇤  �M/M/1/2. (27b)

However, the age performance of the M/M/1/1 system is
less easy to classify. Specifically, as ⇢ increases, the relative
performance of the M/M/1/1 system improves. In terms of the
golden ratio ⇢

⇤ = (1 +
p

5)/2, we have that

⇢  1/⇢
⇤ ) �M/M/1/2  �M/M/1/1; (28a)

1

⇢⇤
 ⇢  ⇢

⇤ ) �M/M/1/2⇤  �M/M/1/1  �M/M/1/2; (28b)

⇢
⇤  ⇢ ) �M/M/1/1  �M/M/1/2⇤ . (28c)

Figure 6 compares the average age for these queues. At low
load, all of these queues achieve essentially the same average
age (1 + 1/⇢)/µ as the M/M/1 and M/D/1 FCFS queues
evaluated in Fig. 2. When the queue is almost always empty,

4While Kendall notation A/S/c is consistently used to signify the Arrival
process, the Service time, and the number of servers c, there is no consensus
on a fourth entry for these systems. Here we (mostly) follow [18], with the
fourth entry classifying how arrivals access the servers: ·/·/c is a c server
system with an unbounded queue; ·/·/c/m indicates a system capacity of m
updates (i.e. an FCFS waiting room of size m� c) with new arrivals blocked
when the waiting room is full, and ·/·/c/m⇤ with m = c+1, indicates a single
packet waiting room with preemption in waiting. We then add the convention
·/·/c⇤ to signify that a new arrival preempts the oldest update in service. (Since
preempted packets are discarded, the waiting room becomes irrelevant.) Note
that in [22], the M/M/1⇤ and M/M/1/2⇤ queues were called LCFS-S and
LCFS-W, with S and W denoting preemption, S in Service and W in Waiting.
In both [18], [22], it was assumed that obsolete updates were discarded. In
[20], the fourth entry was the size of the waiting room, LCFS designated
queues in which a new arrival moved in front of any waiting updates and
the prefixes P and NP indicated whether the service was preemptive (P) or
Non-Preemptive (NP), i.e. does the new arrival go immediately into service or
simply to the head of the waiting line. [20] also used suffixes (C) and (D) to
indicate whether the queue was work Conserving or whether obsolete updates
were Discarded. Thus the M/M/1/2⇤ queue in [18] was the M/M/1 LCFS-W
queue in [22] and was the M/M/1/1 NP-LCFS (D) queue in [20].

• Optimal age is achieved by choosing a λ which makes the server being slightly busy than being idle. 
• If ρ is close to 1 we maximize the throughput. 
• If ρ is close to 0, we minimize the delay.
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For M/D/1 and D/M/1 queues the average AoI are given by
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in order to characterize elementary properties of the average
age. This is followed by Section III-B, which uses zero-wait
systems to derive age lower bounds, and Section III-C. which
examines age in queues that serve multiple sources.

A. Age in Single-source Single-server Queues
This review is based chiefly on AoI results in [4], [18],

[20]. We start with variations on non-preemptive and pre-
emptive single server queues, for which the representation
in [20] of the age process �(t) by the point process
{(t0n, Tn) : n = 0, 1, . . .} has led to a panoply of results, in-
cluding the extension to distributional results for the stationary
age �(t) and the peak age An and also generalization to
GI/GI/1 queues.

Throughout this discussion, each server has expected service
time E[S] and each service system has i.i.d. interarrival times
with expected value E[Y ]. For consistency of presentation,
� = 1/ E[Y ] is the arrival rate, µ = 1/ E[S] is the service
rate, and the system has offered load ⇢ = �/µ. Numerical
comparisons will be presented in terms of the load ⇢ with
1/µ = 1.

For the FCFS M/M/1 queue with offered load ⇢, it was
shown [4] using (3) that the average age is
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For fixed service rate µ, the age-optimal utilization ⇢
⇤ satisfies

⇢
4 � 2⇢

3 + ⇢
2 � 2⇢ + 1 = 0 and thus ⇢

⇤ ⇡ 0.53. The server
is idle ⇡ 47% of the time. The optimal age is achieved by
choosing a � that biases the server towards being busy only
slightly more than being idle. Note that we would want ⇢ close
to 1 if we wanted to maximize the throughput, which is the
number of packets delivered to the monitors every second. If
we instead wanted to minimize packet delay, that is minimize
the system time of a packet, we would want ⇢ to be close to 0.
Analysis of the M/D/1 queue [20] and the D/M/1 queue [22]
yielded
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where, in terms of the Lambert-W function, W(·),
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Fig. 5 presents age comparisons of the M/M/1, M/D/1,
and D/M/1 queues from [4]. For each queue there is an
age-minimizing offered load. Among these FCFS queues,
we observe that for each value of system load, D/M/1 is
better than M/D/1, which is better than M/M/1. At low load,
randomness in the interarrivals dominates the average status-
age. At high load, M/D/1 and D/M/1 substantially outperform
M/M/1 because the determinism in either arrivals or service
helps to reduce the average queue length. For each queue, we
observe a unique value of ⇢ that minimizes the average age.

What these FCFS queues make apparent is that the arrival
rate can be optimized to balance update frequency against the

possibility of congestion. This prompted the study of lossy
queues that may discard an arriving update while the server
was busy or replace an older waiting update with a fresher
arrival [18], [19], [67]. These strategies, identified as packet
management [18], [19], include the M/M/1/1 queue that blocks
and clears a new arrival while the server is busy, the M/M/1/2
queue that will queue one waiting packet but blocks an arrival
when the waiting space is occupied, and the M/M/1/2⇤ queue
that will preempt a waiting packet with a fresh arrival.4

Another system in this category is the LCFS queue with
preemption in service that permits a new arrival to preempt an
update in service. Extending the notation introduced in [18],
we call this an M/M/1⇤ queue. These systems were shown
[18] to achieve average ages
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. (26d)

From (26), simple algebra will verify that

�M/M/1⇤  �M/M/1/1, (27a)
�M/M/1⇤  �M/M/1/2⇤  �M/M/1/2. (27b)

However, the age performance of the M/M/1/1 system is
less easy to classify. Specifically, as ⇢ increases, the relative
performance of the M/M/1/1 system improves. In terms of the
golden ratio ⇢

⇤ = (1 +
p

5)/2, we have that

⇢  1/⇢
⇤ ) �M/M/1/2  �M/M/1/1; (28a)

1
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⇤ ) �M/M/1/2⇤  �M/M/1/1  �M/M/1/2; (28b)

⇢
⇤  ⇢ ) �M/M/1/1  �M/M/1/2⇤ . (28c)

Figure 6 compares the average age for these queues. At low
load, all of these queues achieve essentially the same average
age (1 + 1/⇢)/µ as the M/M/1 and M/D/1 FCFS queues
evaluated in Fig. 2. When the queue is almost always empty,

4While Kendall notation A/S/c is consistently used to signify the Arrival
process, the Service time, and the number of servers c, there is no consensus
on a fourth entry for these systems. Here we (mostly) follow [18], with the
fourth entry classifying how arrivals access the servers: ·/·/c is a c server
system with an unbounded queue; ·/·/c/m indicates a system capacity of m
updates (i.e. an FCFS waiting room of size m� c) with new arrivals blocked
when the waiting room is full, and ·/·/c/m⇤ with m = c+1, indicates a single
packet waiting room with preemption in waiting. We then add the convention
·/·/c⇤ to signify that a new arrival preempts the oldest update in service. (Since
preempted packets are discarded, the waiting room becomes irrelevant.) Note
that in [22], the M/M/1⇤ and M/M/1/2⇤ queues were called LCFS-S and
LCFS-W, with S and W denoting preemption, S in Service and W in Waiting.
In both [18], [22], it was assumed that obsolete updates were discarded. In
[20], the fourth entry was the size of the waiting room, LCFS designated
queues in which a new arrival moved in front of any waiting updates and
the prefixes P and NP indicated whether the service was preemptive (P) or
Non-Preemptive (NP), i.e. does the new arrival go immediately into service or
simply to the head of the waiting line. [20] also used suffixes (C) and (D) to
indicate whether the queue was work Conserving or whether obsolete updates
were Discarded. Thus the M/M/1/2⇤ queue in [18] was the M/M/1 LCFS-W
queue in [22] and was the M/M/1/1 NP-LCFS (D) queue in [20].
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in order to characterize elementary properties of the average
age. This is followed by Section III-B, which uses zero-wait
systems to derive age lower bounds, and Section III-C. which
examines age in queues that serve multiple sources.

A. Age in Single-source Single-server Queues
This review is based chiefly on AoI results in [4], [18],

[20]. We start with variations on non-preemptive and pre-
emptive single server queues, for which the representation
in [20] of the age process �(t) by the point process
{(t0n, Tn) : n = 0, 1, . . .} has led to a panoply of results, in-
cluding the extension to distributional results for the stationary
age �(t) and the peak age An and also generalization to
GI/GI/1 queues.

Throughout this discussion, each server has expected service
time E[S] and each service system has i.i.d. interarrival times
with expected value E[Y ]. For consistency of presentation,
� = 1/ E[Y ] is the arrival rate, µ = 1/ E[S] is the service
rate, and the system has offered load ⇢ = �/µ. Numerical
comparisons will be presented in terms of the load ⇢ with
1/µ = 1.

For the FCFS M/M/1 queue with offered load ⇢, it was
shown [4] using (3) that the average age is
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For fixed service rate µ, the age-optimal utilization ⇢
⇤ satisfies

⇢
4 � 2⇢

3 + ⇢
2 � 2⇢ + 1 = 0 and thus ⇢

⇤ ⇡ 0.53. The server
is idle ⇡ 47% of the time. The optimal age is achieved by
choosing a � that biases the server towards being busy only
slightly more than being idle. Note that we would want ⇢ close
to 1 if we wanted to maximize the throughput, which is the
number of packets delivered to the monitors every second. If
we instead wanted to minimize packet delay, that is minimize
the system time of a packet, we would want ⇢ to be close to 0.
Analysis of the M/D/1 queue [20] and the D/M/1 queue [22]
yielded
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Fig. 5 presents age comparisons of the M/M/1, M/D/1,
and D/M/1 queues from [4]. For each queue there is an
age-minimizing offered load. Among these FCFS queues,
we observe that for each value of system load, D/M/1 is
better than M/D/1, which is better than M/M/1. At low load,
randomness in the interarrivals dominates the average status-
age. At high load, M/D/1 and D/M/1 substantially outperform
M/M/1 because the determinism in either arrivals or service
helps to reduce the average queue length. For each queue, we
observe a unique value of ⇢ that minimizes the average age.

What these FCFS queues make apparent is that the arrival
rate can be optimized to balance update frequency against the

possibility of congestion. This prompted the study of lossy
queues that may discard an arriving update while the server
was busy or replace an older waiting update with a fresher
arrival [18], [19], [67]. These strategies, identified as packet
management [18], [19], include the M/M/1/1 queue that blocks
and clears a new arrival while the server is busy, the M/M/1/2
queue that will queue one waiting packet but blocks an arrival
when the waiting space is occupied, and the M/M/1/2⇤ queue
that will preempt a waiting packet with a fresh arrival.4

Another system in this category is the LCFS queue with
preemption in service that permits a new arrival to preempt an
update in service. Extending the notation introduced in [18],
we call this an M/M/1⇤ queue. These systems were shown
[18] to achieve average ages

�M/M/1⇤ =
1

µ

✓
1 +

1

⇢

◆
, (26a)
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1

µ

✓
1 +

1

⇢
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⇢

1 + ⇢

◆
, (26b)

�M/M/1/2⇤ =
1

µ

✓
1 +

1

⇢
+

⇢
2(1 + 3⇢ + ⇢

2)

(1 + ⇢ + ⇢2)(1 + ⇢)2

◆
(26c)

�M/M/1/2 =
1

µ

✓
1 +

1

⇢
+

2⇢
2

1 + ⇢ + ⇢2

◆
. (26d)

From (26), simple algebra will verify that

�M/M/1⇤  �M/M/1/1, (27a)
�M/M/1⇤  �M/M/1/2⇤  �M/M/1/2. (27b)

However, the age performance of the M/M/1/1 system is
less easy to classify. Specifically, as ⇢ increases, the relative
performance of the M/M/1/1 system improves. In terms of the
golden ratio ⇢

⇤ = (1 +
p

5)/2, we have that

⇢  1/⇢
⇤ ) �M/M/1/2  �M/M/1/1; (28a)

1

⇢⇤
 ⇢  ⇢

⇤ ) �M/M/1/2⇤  �M/M/1/1  �M/M/1/2; (28b)

⇢
⇤  ⇢ ) �M/M/1/1  �M/M/1/2⇤ . (28c)

Figure 6 compares the average age for these queues. At low
load, all of these queues achieve essentially the same average
age (1 + 1/⇢)/µ as the M/M/1 and M/D/1 FCFS queues
evaluated in Fig. 2. When the queue is almost always empty,

4While Kendall notation A/S/c is consistently used to signify the Arrival
process, the Service time, and the number of servers c, there is no consensus
on a fourth entry for these systems. Here we (mostly) follow [18], with the
fourth entry classifying how arrivals access the servers: ·/·/c is a c server
system with an unbounded queue; ·/·/c/m indicates a system capacity of m
updates (i.e. an FCFS waiting room of size m� c) with new arrivals blocked
when the waiting room is full, and ·/·/c/m⇤ with m = c+1, indicates a single
packet waiting room with preemption in waiting. We then add the convention
·/·/c⇤ to signify that a new arrival preempts the oldest update in service. (Since
preempted packets are discarded, the waiting room becomes irrelevant.) Note
that in [22], the M/M/1⇤ and M/M/1/2⇤ queues were called LCFS-S and
LCFS-W, with S and W denoting preemption, S in Service and W in Waiting.
In both [18], [22], it was assumed that obsolete updates were discarded. In
[20], the fourth entry was the size of the waiting room, LCFS designated
queues in which a new arrival moved in front of any waiting updates and
the prefixes P and NP indicated whether the service was preemptive (P) or
Non-Preemptive (NP), i.e. does the new arrival go immediately into service or
simply to the head of the waiting line. [20] also used suffixes (C) and (D) to
indicate whether the queue was work Conserving or whether obsolete updates
were Discarded. Thus the M/M/1/2⇤ queue in [18] was the M/M/1 LCFS-W
queue in [22] and was the M/M/1/1 NP-LCFS (D) queue in [20].
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in order to characterize elementary properties of the average
age. This is followed by Section III-B, which uses zero-wait
systems to derive age lower bounds, and Section III-C. which
examines age in queues that serve multiple sources.

A. Age in Single-source Single-server Queues
This review is based chiefly on AoI results in [4], [18],

[20]. We start with variations on non-preemptive and pre-
emptive single server queues, for which the representation
in [20] of the age process �(t) by the point process
{(t0n, Tn) : n = 0, 1, . . .} has led to a panoply of results, in-
cluding the extension to distributional results for the stationary
age �(t) and the peak age An and also generalization to
GI/GI/1 queues.

Throughout this discussion, each server has expected service
time E[S] and each service system has i.i.d. interarrival times
with expected value E[Y ]. For consistency of presentation,
� = 1/ E[Y ] is the arrival rate, µ = 1/ E[S] is the service
rate, and the system has offered load ⇢ = �/µ. Numerical
comparisons will be presented in terms of the load ⇢ with
1/µ = 1.

For the FCFS M/M/1 queue with offered load ⇢, it was
shown [4] using (3) that the average age is
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◆
. (22)

For fixed service rate µ, the age-optimal utilization ⇢
⇤ satisfies

⇢
4 � 2⇢

3 + ⇢
2 � 2⇢ + 1 = 0 and thus ⇢

⇤ ⇡ 0.53. The server
is idle ⇡ 47% of the time. The optimal age is achieved by
choosing a � that biases the server towards being busy only
slightly more than being idle. Note that we would want ⇢ close
to 1 if we wanted to maximize the throughput, which is the
number of packets delivered to the monitors every second. If
we instead wanted to minimize packet delay, that is minimize
the system time of a packet, we would want ⇢ to be close to 0.
Analysis of the M/D/1 queue [20] and the D/M/1 queue [22]
yielded
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◆
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where, in terms of the Lambert-W function, W(·),

�(⇢) = �⇢W
⇣
�⇢

�1
e
(�1/⇢)

⌘
. (25)

Fig. 5 presents age comparisons of the M/M/1, M/D/1,
and D/M/1 queues from [4]. For each queue there is an
age-minimizing offered load. Among these FCFS queues,
we observe that for each value of system load, D/M/1 is
better than M/D/1, which is better than M/M/1. At low load,
randomness in the interarrivals dominates the average status-
age. At high load, M/D/1 and D/M/1 substantially outperform
M/M/1 because the determinism in either arrivals or service
helps to reduce the average queue length. For each queue, we
observe a unique value of ⇢ that minimizes the average age.

What these FCFS queues make apparent is that the arrival
rate can be optimized to balance update frequency against the

possibility of congestion. This prompted the study of lossy
queues that may discard an arriving update while the server
was busy or replace an older waiting update with a fresher
arrival [18], [19], [67]. These strategies, identified as packet
management [18], [19], include the M/M/1/1 queue that blocks
and clears a new arrival while the server is busy, the M/M/1/2
queue that will queue one waiting packet but blocks an arrival
when the waiting space is occupied, and the M/M/1/2⇤ queue
that will preempt a waiting packet with a fresh arrival.4

Another system in this category is the LCFS queue with
preemption in service that permits a new arrival to preempt an
update in service. Extending the notation introduced in [18],
we call this an M/M/1⇤ queue. These systems were shown
[18] to achieve average ages
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From (26), simple algebra will verify that

�M/M/1⇤  �M/M/1/1, (27a)
�M/M/1⇤  �M/M/1/2⇤  �M/M/1/2. (27b)

However, the age performance of the M/M/1/1 system is
less easy to classify. Specifically, as ⇢ increases, the relative
performance of the M/M/1/1 system improves. In terms of the
golden ratio ⇢

⇤ = (1 +
p

5)/2, we have that

⇢  1/⇢
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Figure 6 compares the average age for these queues. At low
load, all of these queues achieve essentially the same average
age (1 + 1/⇢)/µ as the M/M/1 and M/D/1 FCFS queues
evaluated in Fig. 2. When the queue is almost always empty,

4While Kendall notation A/S/c is consistently used to signify the Arrival
process, the Service time, and the number of servers c, there is no consensus
on a fourth entry for these systems. Here we (mostly) follow [18], with the
fourth entry classifying how arrivals access the servers: ·/·/c is a c server
system with an unbounded queue; ·/·/c/m indicates a system capacity of m
updates (i.e. an FCFS waiting room of size m� c) with new arrivals blocked
when the waiting room is full, and ·/·/c/m⇤ with m = c+1, indicates a single
packet waiting room with preemption in waiting. We then add the convention
·/·/c⇤ to signify that a new arrival preempts the oldest update in service. (Since
preempted packets are discarded, the waiting room becomes irrelevant.) Note
that in [22], the M/M/1⇤ and M/M/1/2⇤ queues were called LCFS-S and
LCFS-W, with S and W denoting preemption, S in Service and W in Waiting.
In both [18], [22], it was assumed that obsolete updates were discarded. In
[20], the fourth entry was the size of the waiting room, LCFS designated
queues in which a new arrival moved in front of any waiting updates and
the prefixes P and NP indicated whether the service was preemptive (P) or
Non-Preemptive (NP), i.e. does the new arrival go immediately into service or
simply to the head of the waiting line. [20] also used suffixes (C) and (D) to
indicate whether the queue was work Conserving or whether obsolete updates
were Discarded. Thus the M/M/1/2⇤ queue in [18] was the M/M/1 LCFS-W
queue in [22] and was the M/M/1/1 NP-LCFS (D) queue in [20].
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Fig. 5. Time-average age as a function of offered load ⇢ = �/mu for
the FCFS M/M/1, M/D/1 and D/M/1 queues. The expected service
time is 1/µ = 1.

the LCFS ability for the freshest update to jump ahead of
older update packets is negated. However, at high loads, packet
management ensures that that the M/M/1/2⇤, M/M/1/1 and
M/M/1⇤ queues have average age that decreases with offered
load.5 In fact, as the arrival rate � ! 1, the age �M/M/1⇤

will approach the 2/µ lower bound for exponential service
systems because bombarding the server with new update
packets ensures that a fresh status update packet will enter
the waiting room the instant before each service completion.

One can conclude for memoryless service systems that
preemption of old updates by new always helps. However,
the comparisons are muddier when we compare buffering
vs. discarding. This is particularly true when we compare
�M/M/1, which buffers every update, against the ages �M/M/1/1
and �M/M/1/2.

We also note, however, that the apparent superiority of
preemption in service is somewhat misleading; this property
holds for memoryless service times, but not in general. For ex-
ample, the M/D/1⇤ and D/M/1⇤ queues, both of which support
preemption in service, have average ages [20, pp. 8318]

�M/D/1⇤ =
1

µ

exp(⇢)

⇢
, �D/M/1⇤ =

1

µ

✓
1 +

1

2⇢

◆
. (29)

In (29), and also in Fig. 3, we see that the average age �D/M/1⇤

of the D/M/1 preemptive server is monotonically decreasing
in the offered load ⇢. This is because no matter how high
the arrival rate � is (and thus how fast packets are being
preempted), the departure rate is µ as long as an update is in
service. By contrast, in the preemptive M/D/1⇤ queue, �M/D/1⇤

has a minimum at ⇢ = 1 and increases without bound for
⇢ > 1. With deterministic unit-time service and arrival rate
� = ⇢, an update completes service with probability e

�⇢. As
⇢ becomes large, too many updates are preempted, and the
system thrashes, with updates being preempted before they
can complete service and be delivered to the monitor.

B. Zero-wait updates
When the update generator (source) can neither observe

nor control the state of the packet update queue, the optimal
load ⇢

⇤ strikes a balance between overloading the queue and
leaving the queue idle. Here we derive lower bounds to the

5Because congestion is avoided by blocking packets, �M/M/1/2 avoids
blowing up as ⇢ ! 1. However, it achieves a minimum age of � = 2.61
at ⇢ = 1.427 and then becomes an increasing function for ⇢ > 1.427. For
large ⇢, the M/M/1/2 queue admits its next update too quickly.
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Fig. 6. Time-average age as a function of offered load ⇢ for the
FCFS M/M/1/2 and M/M/1/1 blocking queues, the LCFS M/D/1⇤,
M/M/1⇤, and D/M/1⇤ queues supporting preemption in service, and
the M/M/1/2⇤ queue supporting preemption in waiting. The expected
service time is 1/µ = 1.

age � by considering a system in which the update generator
observes the state of the packet update queue so that a new
status update arrives just as the previous update packet departs
the queue. Since each delivered update packet is as fresh as
possible, the average age for this system is a lower bound to
the age for any queue in which updates are generated as a
stochastic process independent of the current queue state.

In this zero-wait systems, the update service times Sn are
i.i.d. with first and second moments E[S] and E

⇥
S

2
⇤
. Referring

to the age function �(t) in Figure 2, tn = t
0
n�1. This implies

update n has interarrival time Yn = Sn�1, zero waiting time,
and system time Tn = Sn. Further, E[Y T ] = E[YnTn] =
E[Sn�1Sn] = (E[S])2. From Equation (3), the average age
becomes

�⇤ =
1

E[S]


E[S2]

2
+ (E[S])2

�
. (30)

It follows that for a system with memoryless service times
with E[S] = 1/µ, the minimum average age is

�⇤
·/M/1 = 2/µ. (31)

Moreover, non-negativity of the variance of S implies
E
⇥
S

2
⇤
� (E[S])2, Thus, for all service time distributions with

E[S] = 1/µ, (30) yields the lower bound

�⇤ � 3 E[S]

2
=

3

2µ
. (32)

This lower bound is tight as it is achievable when the service
times are deterministic.

C. Multiple Sources at a Single-server Queue
When updates have stochastic service times, AoI analysis of

multiple updating sources sharing a simple queue has proven
challenging and there have been relatively few contributions6

[22], [68]–[71]. In these papers, each source i generates
updates as an independent Poisson process of rate �i and the
service time S of an update has expected value 1/µ. Thus
source i has offered load ⇢i = �i/µ and the total offered load
is ⇢ =

PN
i=1 ⇢i.

Extending the single-source age analysis in [72], reference
[70] derived the average age and average peak age of each

6We will see in Sections IV and VII that there has been much more interest
in using complex scheduling to support multiple sources.

• At low load, randomness in the interarrivals dominates the average age. 
• At high load, M/D/1 and D/M/1 outperform M/M/1 because the determinism in either 

arrivals or service helps to reduce the average queue length. 
• Unique value of ρ that minimizes the average age.



Single-source and single-server systems – Packet management
18

• The arrival rate can be optimized to balance frequency of updates against congestion.
• Departure from the external arrivals assumption.

• Study of lossy queues that may discard an arriving update while the server was busy or replace 
an older waiting update with a fresher arrival. 

• Packet management inherently prioritizes some packets over others which is a first 
indication of different value of the packets thus the prioritization!

• S. Kaul, R. Yates, M. Gruteser, “Status updates through queues”, CISS 2012.
• N. Pappas, J. Gunnarsson, L. Kratz, M. Kountouris, V. Angelakis, "Age of Information of Multiple Sources with Queue 

Management", IEEE ICC 2015.
• M. Costa, M. Codreanu, A. Ephremides, “On the age of information in status update systems with packet 

management”, IEEE Trans. Info. Theory 2016.
• A. Kosta, N. Pappas, A. Ephremides, V. Angelakis, "Age of Information Performance of Multiaccess Strategies with 

Packet Management", IEEE/KICS JCN, June 2019.



Non-linear Ageing

• AoI grows over time linearly 
– the performance degradation caused by information aging may not be a linear 

function of time.
• One way to capture the nonlinear behavior of information aging is to define freshness 

and staleness as nonlinear functions of AoI.
• A penalty function of the AoI is non-decreasing. Outdated data is usually less 

desirable than fresh data.

2022-04-07 19
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Cost of Update Delay (CoUD)

• CoUD metric associates the cost of staleness with the statistics of the source
• C(t) = fs(t-u(t))
– fs(t) is a monotonically increasing function
– u(t) timestamp of the most recently received update

• Different cost functions can represent different utilities
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• A. Kosta, N. Pappas, A. Ephremides, V. Angelakis, "Age and Value of Information: Non-linear Age Case", IEEE 
ISIT 2017.

• A. Kosta, N. Pappas, A. Ephremides, V. Angelakis, "The Cost of Delay in Status Updates and their Value: Non-linear 
Ageing", IEEE Trans. Comm., 2020.



Cost of Update Delay (CoUD): The linear case 2022-04-07 21

IEEE ISIT 2017 26 June 2017 4

Cost of Update Delay (CoUD): Linear case

• fs(t) = ↵t



Cost of Update Delay (CoUD): The exponential case 2022-04-07 22

IEEE ISIT 2017 26 June 2017 5

Cost of Update Delay (CoUD): Exponential case

• fs(t) = e↵t � 1  ! low autocorrelation



Cost of Update Delay (CoUD): The logarithmic case 2022-04-07 23

IEEE ISIT 2017 26 June 2017 6

Cost of Update Delay (CoUD): Logarithmic case

• fs(t) = log(↵t+ 1)  ! high autocorrelation



Value of Information of Update (VoIU)
• It captures the degree of importance of an update

2022-04-07 24

• In the linear CoUD case, VoIU is independent of 
the cost assigned per time unit àthe Value is 
independent of the slope.
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Fig. 4. Average CoUD and VoIU vs. the server utilization for the M/M/1 sys-
tem with µ = 1, linear case.

where Ei denotes the exponential integral defined as

Ei[x] = −
∫ ∞

−x

e−t

t
dt. (32)

Proof: The proof is along the lines of the proof in
Appendix B and is therefore omitted.

Corollary 4: For the fs(t) = log (αt+1) case, the average
CoUD for the M/M/1 system with an FCFS queue discipline
is upper bounded by

CL ≤ λ
e

µ−λ
α

(
λEi

[
λ−µ

α

]
+(λ−µ)Ei

[
− λ

α

]
e

2λ−µ
α

)

λ(µ−2λ)
, (33)

where Ei denotes the exponential integral defined in (32). The
limit of (33) as λ approaches µ/2 gives

CL ≤ λ
2α−e

µ
2α (2α−µ)Ei

(
− µ

2α

)

αµ
. (34)

Let Ȳ and Y be i.i.d. random variables and let Ȳ be indepen-
dent of T . The average CoUD upper bound in (33) equals the
lower bound for the average PCoUD E

[
log(α(Ȳ +T )+1)

]
.

Proof: The proof is given in Appendix D.

VI. VALUE OF INFORMATION OF UPDATE

COMPUTATION FOR THE M/M/1 SYSTEM

Following the same procedure as in the CoUD met-
ric, we compute the average VoIU given by (14), for the
M/M/1 system with an FCFS queue discipline.

Theorem 4: For the fs(t) = αt case, the average VoIU
for the M/M/1 system with an FCFS queue discipline is
approximated by

VP = λ
(1−ρ)

2ρ
2F1

(
1, 2;3;2−1

ρ

)
, (35)

where 2 F1 is the hypergeometric function defined by the
power series

2F1(a, b;c;z) =
∞∑

n=0

(a)n(b)n

(c)n

zn

n!
, (36)

Fig. 5. Average CoUD vs. the service rate vs. the arrival rate for the
M/M/1 system, linear case with α = 1.

Fig. 6. Average CoUD vs. the server utilization for the M/M/1 system with
µ = 1, linear case with α = 0.1.

for |z| < 1 and by analytic continuation elsewhere. Here (q)n

is the Pochhammer symbol, which is defined by

(q)n =

{
1, if n = 0
q(q+1) · · · (q+n−1), if n > 0.

(37)

Proof: The proof is given in Appendix E.
Remark 3: For the cases fs(t) = eαt−1 and fs(t) =

log(αt+1), we compute numerically the expected values
E
[
VE

]
and E

[
VL

]
, respectively, by

E
[
eα(Y +T )−eαT

eα(Y +T )−1

]

=
∫ ∞

0
E
[
eα(Y +T )−eαT

eα(Y +T )−1

∣∣∣Y = y

]
λe−λydy, (38)

E
[
log(α(Y +T )+1)−log(αT+1)

log(α(Y +T )+1)

]
=

=
∫ ∞

0
E
[
log(α(Y +T )+1)−log(αT+1)

log(α(Y +T )+1)

∣∣∣Y = y

]
λe−λydy.

(39)
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• Linear case, the average VoIU for the M/M/1 
system with an FCFS queue discipline.
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Fig. 4. Average CoUD and VoIU vs. the server utilization for the M/M/1 sys-
tem with µ = 1, linear case.

where Ei denotes the exponential integral defined as
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where Ei denotes the exponential integral defined in (32). The
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Let Ȳ and Y be i.i.d. random variables and let Ȳ be indepen-
dent of T . The average CoUD upper bound in (33) equals the
lower bound for the average PCoUD E
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.

Proof: The proof is given in Appendix D.

VI. VALUE OF INFORMATION OF UPDATE

COMPUTATION FOR THE M/M/1 SYSTEM

Following the same procedure as in the CoUD met-
ric, we compute the average VoIU given by (14), for the
M/M/1 system with an FCFS queue discipline.

Theorem 4: For the fs(t) = αt case, the average VoIU
for the M/M/1 system with an FCFS queue discipline is
approximated by

VP = λ
(1−ρ)

2ρ
2F1

(
1, 2;3;2−1

ρ

)
, (35)

where 2 F1 is the hypergeometric function defined by the
power series

2F1(a, b;c;z) =
∞∑

n=0

(a)n(b)n

(c)n

zn

n!
, (36)

Fig. 5. Average CoUD vs. the service rate vs. the arrival rate for the
M/M/1 system, linear case with α = 1.

Fig. 6. Average CoUD vs. the server utilization for the M/M/1 system with
µ = 1, linear case with α = 0.1.

for |z| < 1 and by analytic continuation elsewhere. Here (q)n

is the Pochhammer symbol, which is defined by

(q)n =

{
1, if n = 0
q(q+1) · · · (q+n−1), if n > 0.

(37)

Proof: The proof is given in Appendix E.
Remark 3: For the cases fs(t) = eαt−1 and fs(t) =

log(αt+1), we compute numerically the expected values
E
[
VE

]
and E

[
VL

]
, respectively, by

E
[
eα(Y +T )−eαT

eα(Y +T )−1

]

=
∫ ∞

0
E
[
eα(Y +T )−eαT

eα(Y +T )−1

∣∣∣Y = y

]
λe−λydy, (38)

E
[
log(α(Y +T )+1)−log(αT+1)

log(α(Y +T )+1)

]
=

=
∫ ∞

0
E
[
log(α(Y +T )+1)−log(αT+1)

log(α(Y +T )+1)

∣∣∣Y = y

]
λe−λydy.

(39)
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Fig. 1. Example of the linear CoUD evolution over time.

age as coined by Kaul is a special cost case, where the cost
is counted in time units, as shown in Fig. 1. In this paper
we consider that the cost can take any form of a “payment”
function that can also assign to it any relevant unit.

The ith interarrival time Yi = ti−ti−1 is the time elapsed
between the generation of update i and the previous update
generation and is a random variable. Moreover, Ti = t′i−ti is
the system time of update i corresponding to the sum of the
waiting time at the queue and the service time. Note that the
random variables Yi and Ti are real system time measures and
are independent of the way we choose to calculate the cost of
update delay i.e., of fs(t).

The value of CoUD achieved immediately before receiving
the ith update is called, in analogy to the peak age [52], peak
cost of update delay (PCoUD), and is defined as

Ai = fs(t′i−ti−1). (2)

At time t′i, the cost C(t′i) is reset to fs(t′i−ti) and we
introduce the value of information of update (VoIU) i as

Vi =
fs(t′i−ti−1)−fs(t′i−ti)

fs(t′i−ti−1)
, (3)

to measure the degree of importance of the status update
received at the destination. Intuitively, this metric depends
on two system parameters at the time of observation: (i) the
CoUD value at the destination (ii) the time that the received
update was generated. This can be easily shown to be similarly
expressed as a dependence on: (i) the interarrival time of the
last two packets received (ii) the current reception time.

A. CoUD Properties

To explore a wide array of potential uses of the notion of
cost, we investigate three sample cases for the fs(·) function,

fs(t) = αt, (4)

fs(t) = eαt−1, (5)

fs(t) = log(αt+1), (6)

for α > 0. As mentioned earlier, we can not fully leverage
CoUD if we do not assume that the samples of the observed
stochastic process are dependent. With this in mind, we pro-
pose the selection of the fs(·) function of CoUD according
to the autocorrelation of the process. More specifically, if the

autocorrelation is small, we suggest the exponential function,
in order to penalize the increase of system time between
updates, which would significantly affect the reconstruction
potential of the process. If the autocorrelation is large, the log-
arithmic function is more appropriate. For intermediate values
the linear case can be a reasonable choice.

Remark 1: Observe that it would not make sense to have the
exponential cost increase beyond the maximum value of the
prediction error. In the special case that the observed process
is stationary this is constant and equal to the variance of the
process as the cost goes to infinity. Recall that one of the
motivations of the works on AoI is the remote estimation and
reconstruction of the source signal.

The autocorrelation R(t1, t2) = E[x(t1)x∗(t2)] of a
stochastic process is a positive definite function, that is∑

i,j βiβ∗
j R(ti, tj) > 0, for any βi and βj . Tuning the parame-

ter α in (4)-(6) properly enables us to associate with accuracy
the right fs(t) function to a corresponding autocorrelation.
Next, we focus on VoIU and analyze it for each case of fs(t)
separately.

III. VALUE OF INFORMATION OF UPDATE ANALYSIS

The VoIU is a bounded fraction that takes values in the
real interval [0, 1], with 0 representing the minimum benefit
of an update and 1 the maximum. In a system where status
updates are instantaneously available from the source to the
destination, VoIU is given by

Vi = lim
t′i→ti

fs(t′i−ti−1)−fs(t′i−ti)
fs(t′i−ti−1)

= 1. (7)

The interpretation of this property is that in the extreme case
when the system time is insignificant and a packet reaches the
destination as soon as it is generated, we assign to the VoIU
metric the maximum value reflecting that the reception occurs
without value loss.

We first derive useful results for the general case with-
out considering specific queueing models. For the first case,
fs(t) = αt, expression (3) yields

VP,i =
Yi

Yi+Ti
. (8)

Note that for α = 1 the CoUD corresponds to the timeliness
of each status update arriving and is the so-called AoI. The
cost reductions {D1, . . . , Dn}, depicted in Fig. 1, correspond
to the interarrival times {Y1, . . . , Yn}, and also the limits,
limYi→+∞ VP,i = 1, and limTi→+∞ VP,i = 0, agree with
the definition. Next, for fs(t) = eαt−1, shown in Fig. 2,
the definition of VoIU is

VE,i =
eα(Yi+Ti)−eαTi

eα(Yi+Ti)−1
, (9)

and the corresponding limits are limYi→+∞ VE,i = 1, and
limTi→+∞ VE,i = 1−e−αYi, where limYi→0(1−e−αYi) = 0,
and limYi→+∞(1−e−αYi) = 1. At last, for the case fs(t) =
log(αt+1), depicted in Fig. 3, we obtain

VL,i =
log(α(Yi+Ti)+1)−log(αTi+1)

log(α(Yi+Ti)+1)
, (10)
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Numerical evaluation



Extending AoI
• The classical AoI does not capture properties 

of the source 
– except timeliness itself which is a 

semantic property.
• With non-linear AoI and the VoI, we can go a 

step further.
• Here we will discuss another extension of 

AoI.
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G. Stamatakis, N. Pappas, A. Traganitis, ‘‘Control of Status Updates for Energy Harvesting 
Devices that Monitor Processes with Alarms", IEEE GLOBECOM Workshops, Dec. 2019.



Stochastic process with alarms (or a two-state)
2022-04-07 27

• Short timescale: Stochastic process 𝑍! evolves over discrete 
time 𝑘.

• Long timescale: A two state Markov Process
– States: Normal, Alarm,
– Geometrically distributed sojourn times in each state.

• The alarm state indicates the need for more frequent updates
– Closely follow/track the evolution of 𝑍! to make informed 

decisions.
• Examples of 𝑍!

– the network load under normal operation and under a DoS
attack.

– Physical phenomena such as temperature, water levels, and air 
pollution.

– Tracking of a process in general.
• Objective: Optimize the freshness of status updates at the 

destination while considering the energy resources currently 
available as well as future demands for energy (especially 
during alarm periods).

Normal Alarm𝑃""

𝑃"#

𝑃#"

𝑃##

Normal
Alarm

G. Stamatakis, N. Pappas, A. Traganitis, ‘‘Control of Status Updates for Energy Harvesting 
Devices that Monitor Processes with Alarms", IEEE GLOBECOM Workshops, Dec. 2019.



AoI for stochastic processes with alarms
• Extend the definition of AoI

– the amount of time that has elapsed since the generation the last status update that has been 
successfully received by the monitor (typical)

– the amount of time that has elapsed since the last state change of the stochastic 
process for which the destination in uninformed (new)

• Use two AoI variables, one for each state of the process Δ!" , 𝑧 ∈ {0,1}.
• The destination knows the stochastic process to be in state 𝑍#$. 

– Not necessarily the actual state of the stochastic process indicated with 𝑍!.

• Sequence of time indices where a state change has occurred
– {𝜏%: 𝑍&$ ≠ 𝑍&$%& , 𝑛 = 1,2, … }

• Extended definition of AoI Δ!" = 1
𝑘 − 𝑈# ,
𝑘 − 𝜏%,
0,

if 𝑧 = 𝑍#$

if 𝑧 ≠ 𝑍#$ and 𝑧 = 𝑍#
if 𝑧 ≠ 𝑍#$ and 𝑧 ≠ 𝑍#
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Extended AoI - illustration for the two-state process 2022-04-07 29
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System model (State & Action spaces) 2022-04-07 30

• At the beginning of the 𝑘-th timeslot the sensor 
samples the stochastic process in order to assess 
𝑍#.

• The sensor also considers 
– The state of the process known at the destination 
𝑍!".

– The energy stored at the energy buffer 𝐸!
– The values of both AoI variables Δ#

$ , Δ#%

• These features constitute the state of the system
– 𝑠! = [𝑍!, 𝑍!", 𝐸!, Δ#

$ , Δ#% ]
• Given 𝑠# the sensor must choose whether to 

transmit a fresh status update or not, 𝑎# ∈ 0,1 .
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System model (Stochastics & Dynamics)
2022-04-07 31

• By the end of the 𝑘-th timeslot
– An energy unit may have been 

harvested as indicated by random 
variable 𝑊.

/ ∈ {0,1} with 𝑃/
– The state of the stochastic process 

will change randomly 𝑊.
0 ∈ 0,1

• 𝑃& =
𝑃$$ 𝑃$%
𝑃%$ 𝑃%%

– If a transmission is attempted, it 
will succeed with probability
• 𝑃' = 𝑃 𝑊!

' = 1 ,𝑊!
' ∈ {0,1}

• Determine the state of the system 
at the beginning of the (𝑘 + 1)-th
time-slot
– 𝑍!"# = 𝑊!

$

– 𝑍!"#% = 9𝑍!
%, if 𝑊!

& = 0
𝑍!, if𝑊!

& = 1

– 𝐸!"# = 9
𝐸! +𝑊!

( − 1, if 𝑎! = 1
𝐸! +𝑊!

(, if 𝑎! = 0
– Δ)"#* , Δ)"## are given by a recursive 

expression equivalent to the 
definition presented.



System model (Transition & Total Cost, Optimal policy)
2022-04-07 32

• At the end of each time-slot a cost is paid by 
the sensor.

• The transition cost is an increasing function 
of Δ'" and Δ'# .

• 𝑔(Δ'
" , Δ'#) =𝑔"(Δ'") +𝑔#(Δ'#)

– 𝒈𝟏 ⋅ increases faster than  𝒈𝟎 ⋅ .
– This expresses the need for frequent status 

updates when in alarm state àThe value 
of information in that case is higher!

• Examples:
– 𝑔(Δ#

$, Δ#%) =(1 − Z#)Δ#$ +𝑍& Δ#%
'

– i.e., cost is a function of the true state of the 
stochastic process and not the one perceived by 
the destination.

– 𝑔(Δ#
$, Δ#%) =Δ#$ + Δ#%

'

– cost considers both AoI variables simultaneously 
(Upcoming work)

• Objective: Find an optimal policy 
that, given 𝑠!, decides whether to 
transmit a status update to minimize 
the discounted transition costs 
accumulated over an infinite horizon.

• The problem is a Markov Decision 
Process, and the optimal policy can 
be found via the Value Iteration 
algorithm. 

• The curse of dimensionality can be 
circumvented by utilizing structural 
results for the optimal policy.



Optimal Policy - Low Probability EH 
(𝑃! = 0.4) - 𝑃" = 0.8

33

Optimal actions in the alarm state

Optimal actions in the normal state

No Transmission

Transmission

Optimal actions in the normal state

No Transmission

Transmission• Scenario
– the process spends most of its time 

in normal mode with relative short 
periods of alarm states.
• State transition matrix 𝑃& =

0.9 0.1
0.2 0.8

• The optimal policy will save 
energy in the normal state in 
order to be able to transmit in the 
alarm state
– Threshold structure: Transmissions 

occur when Δ.6 and Δ.7 is larger than 
a threshold value given 𝐸..



Optimal Policy - High Probability EH
(𝑃! = 0.8) - 𝑃" = 0.8

34

• Scenario
– the process spends most of its time 

in normal mode with relative short 
periods of alarm states.
• State transition matrix 𝑃& =

0.9 0.1
0.2 0.8

• Energy saving is less important 
when EH occurs with high 
probability
– Threshold structure: 

Transmissions occur when Δ.6 and 
Δ.7 is larger than a threshold value 
given 𝐸..

Optimal actions in the normal state

No Transmission

Transmission

Optimal actions in the alarm state

No Transmission

Transmission



Cost-to-go for different state transition probabilities, 𝑃< = 0.8, 𝑃= = 0.8
35

1
2

3

4

• Cost-to-go starting from a state 𝑠" where the 
stochastic process is in normal mode, the 
destination is aware of it, the energy buffer is 
empty and Δ'

" = 1, Δ'# = 0.
• Various combinations of 𝑃#", 𝑃"#

– 𝑃( =
1 − 𝑃$% 𝑃$%
𝑃%$ 1 − 𝑃%$

1. Large sojourn time in the alarm state. 
– Large probability to enter the alarm state and small 

probability to leave out of it.
2. Large sojourn times in both states 

– Small probability to leave a state once in it.
3. Large sojourn time in the normal state.

– AoI may increase up to large values.
4. The stochastic process oscillates between 

normal and alarm state with small sojourn 
times in each state.
– AoI and costs remain small due to the short sojourn 

times.

1

2

3

4



Discussion
• Some other metrics appeared after that work

– Age of Incorrect Information, 
– Pull based AoI.

• Later we will discuss the case of real-time tracking a source with the purpose 
of remote actuation in real-time.
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• A. Maatouk, S. Kriouile, M. Assaad and A. Ephremides, "The Age of Incorrect Information: A New Performance Metric for 
Status Updates”,  IEEE/ACM Trans. on Networking 2020.

• J. Holm, A. E. Kalør, F. Chiariotti, B. Soret, S. Jensen, T. Pedersen, and P. Popovski, “Freshness on demand: Optimizing 
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model”, IEEE/ACM Trans. on Networking 2021.
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AoI and VoI in Control

• AoI considers only the timeliness!
• It has been shown that AoI alone does not capture the requirements of 

networked control loops.
• Introduction of non-linear AoI facilitated the adoption in networked-control 

systems (NCS).
• VoI can reduce the estimation error in an NCS setup!
• Very active research area that started recently.
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O. Ayan, M. Vilgelm, M. Klügel, S. Hirche, and W. Kellerer, "Age-of-Information vs. Value-of-Information 
Scheduling for Cellular Networked Control Systems", 10th ACM/IEEE ICCPS 2019.



Towards a complete characterization of the AoI distribution

• Stochastic hybrid systems are utilized to analyze AoI moments and the moment generating 
function of AoI in networks
• R. D. Yates, “The Age of Information in Networks: Moments, Distributions, and Sampling,” IEEE Trans. Info. Theory 

2020.

• A general formula of the stationary distribution of AoI is obtained and applied to a wide class of 
continuous-time single server queues with different disciplines
• Y. Inoue, H. Masuyama, T. Takine, and T. Tanaka, “A general formula for the stationary distribution of the age of 

information and its application to single-server queues,” IEEE Trans. Info. Theory 2019.

• The distribution of AoI for the GI/GI/1/1 and GI/GI/1/2* systems, under non-preemptive 
scheduling
• J. P. Champati, H. Al-Zubaidy, and J. Gross, “On the distribution of aoi for the GI/GI/1/1 and GI/GI/1/2* systems: 

Exact expressions and bounds,” IEEE INFOCOM 2019.



Towards a complete characterization of the AoI distribution

• The AoI distribution in bufferless systems
• G. Kesidis, T. Konstantopoulos, M.A. Zazanis, "The distribution of age-of-information performance measures for 

message processing systems", Queueing Systems 2020.

• Complete characterization of the AoI stationary distribution in a discrete time queueing system 
for: FCFS, preemptive LCFS, a bufferless system with packet dropping. 

• A methodology for analyzing general non-linear age functions, using representations of 
functions as power series.
• A. Kosta, N. Pappas, A. Ephremides, V. Angelakis, "The Age of Information in a Discrete Time Queue: Stationary 

Distribution and Non-linear Age Mean Analysis", IEEE JSAC SI on AoI, 2021. (shorter version in IEEE ICC 2020).



Interplay between AoI and other metrics



AoI and Delay Violation Probability Interplay in the Two-user MAC

• Two sources sending packets to a common
destination.

• Source S1 has external traffic with stringent delay
requirements.

• Source S2 monitors a sensor and samples a status
update on each slot w.p. q2. (Departure from the
classical model of external updates that was common
in the early studies of AoI).
• Then, transmits the update to the destination

through a channel with success probability p2.
• If the transmission of a status update fails, then

it is dropped.
• Time is slotted.
• Instantaneous and error-free ACK/NACK.

as functions of their transmission probabilities, the data arrival
rate at the source node and the energy arrival rate at the sensor,
which can be further used to optimize the operating parameters
of such systems.

II. SYSTEM MODEL

We consider a time-slotted MAC where two source nodes
with heterogeneous traffic intend to transmit to a common
destination, as shown in Fig. 1. The first node S1 is connected
to the power grid, thus it is not power-limited. S1 has bursty
data arrival following a Bernoulli process with probability �.
When the data queue of S1 is not empty, it transmits a packet
to the destination with probability q1. The second node S2 is
not connected to a dedicated power source, but it can harvest
energy from its environment, such as wind or solar energy. We
assume that the battery charging process follows a Bernoulli
process with probability �, with B denoting the number of
energy units in the energy source (battery) at node S2. The
capacity of the battery is assumed to be infinite. When S2 has a
non-empty battery, it generates a status update with probability
q2 and transmits it to the destination. The transmission of one
status update consumes one energy unit from the battery.

�

Data Queue

Q

S1 D

S2

�

B
Energy Queue

Sensor

Fig. 1. The system model. One throughput-oriented source node and an
energy-harvesting (EH) device share the same wireless channel to a common
destination. The EH device is generating status updates to transmit to the
destination.

We assume multi-packet reception (MPR) capabilities at the
destination node D, which means that D can decode multiple
messages simultaneously with a certain probability. MPR is a
generalized form of the packet erasure model, and it captures
better the wireless nature of the channel since a packet can
be decoded correctly by a receiver that treats interference
as noise if the received signal-to-interference-plus-noise ratio
(SINR) exceeds a certain threshold. We consider equal-size
data packets and the transmission of one packet occupies one
timeslot.

For the notational convenience, we define the following
successful transmission/reception probabilities, depending on
whether one or both source nodes are transmitting in a given
timeslot:

• pi/i: success probability of Si, i 2 {1,2} when only Si is
transmitting;

• pi/i, j : success probability of Si when both Si and Sj are
transmitting;

In the case of an unsuccessful transmission from S1, the
packet has to be re-transmitted in a future timeslot. We
assume that the receiver gives an instantaneous error-free
acknowledgment (ACK) feedback of all the packets that were
successful in a slot at the end of the slot. Then, S1 removes
the successfully transmitted packets from its buffer. In case of
an unsuccessful packet transmission from S2, since it contains
a previously generated status update, that packet is dropped
without waiting to receive an ACK, and a new status update
will be generated for its next attempted transmission.

In the remainder of this paper, we aim at characterizing the
tradeoff between the stable throughput/delay of the node S1
and the average AoI of the EH sensor S2.

A. Physical Layer Model

We consider the success probability of each node i based
on the SINR

SINRi =
Pi |hi |2�iÕ

j2A\{i } Pj |hj |2�j + �2 ,

where A denotes the set of active transmitters; Pi denotes
the transmission power of node i; hi denotes the small-scale
channel fading from the transmitter i to the destination, which
follows CN(0,1) (Rayleigh fading); �i denotes the large-scale
fading coefficient of the link i; �2 denotes the thermal noise
power.

Denote by ✓i , i = {1,2}, the SINR thresholds for having
successful transmission. By utilizing the small-scale fading
distribution, we can obtain the success probabilities as follows:

pi/i = P {SNRi � ✓i} = exp
✓
� ✓i�

2

Pi�i

◆
, i = 1,2. (1)

pi/i, j = P {SINRi � ✓i} =
exp

⇣
� ✓i�2

Pi�i

⌘
1 + ✓i

Pj� j

Pi�i

, i = 1,2, j , i. (2)

III. PERFORMANCE ANALYSIS OF NODE S1

In this section, we study the performance of node S1
regarding (stable) throughput and the average delay per packet
needed to reach the destination. The service probability of S1
is given by

µ =Pr(B = 0)q1p1/1 + Pr(B , 0)q1(1 � q2)p1/1
+ Pr(B , 0)q1q2p1/1,2
=q1p1/1 [1 � q2Pr(B , 0)] + q1Pr(B , 0)q2p1/1,2. (3)

In this work, we mainly focus on the case where S2 relies
on energy harvesting to operate, but for comparison purposes
we also consider the case that S2 is connected to the power
grid, thus does not have energy limitations.

�
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event. We will discuss below the possible sources of error.
The service process also depends on the activity of the sensor.
The random variable �n denotes whether the sensor is active
or not at time n (�n = 1 when the sensor is active and �n = 0
otherwise). Then, the service in the bit domain is given by

sn =

8>>>>><
>>>>>:

R(�), if ⌦n = success and �n = 0
0, if ⌦n = error and �n = 0
R(�), if ⌦ = success and �n = 1
0, if ⌦n = error and �n = 1

.

Note that the system can be seen as a memoryless on-off
server with parameters R and activation probability pa where
the transmission rate R determines pa = P{Cn � R}.

Using the transformation sn = R(�) = log g(�), we have

g(�) =

8>>>>><
>>>>>:

eR, if ⌦ = success and �n = 0
1, if ⌦n = error and �n = 0
eR, if ⌦n = success and �n = 1
1, if ⌦n = error and �n = 1

,

Since P{�n = 1} = q2, the Mellin transform of g(�) can be
computed as

Mg(�)(s) = (1 � q2)
h
✏1 + (1 � ✏1)e(s�1)R

i

+ q2
h
✏2 + (1 � ✏2)e(s�1)R

i
= e(s�1)R(1 � �) + �,

where � = ✏1 � q2(✏1 � ✏2).
If the packet length is assumed large, the probability of

erroneous packet detection is given by the outage probability.
Therefore, for � = eR � 1,

✏1 = P{log(1 + SNR1) < R} = 1 � e�
��2r ✓1

P1 (4)

✏2 = P{log(1 + SINR1) < R} = 1 � e�
��2r ✓1

P1

1 + � P2
P1
( r1
r2
)✓
. (5)

B. Delay Bound

For exposition convenience, we assume constant arrivals so
that (⇢,�) are independent of s. The kernel is upper bounded
by [21]

K(s, t + w, t)  e�s
�
Mg(�)(1 � s)

�w 1 �
�
e�sMg(�)(1 � s)

� t+1

1 � e�sMg(�)(1 � s) .

(6)
The queueing system is stable if e�sMg(�)(1 � s) < 1.

Considering a stable queueing system, the steady-state ker-
nel is given by

K(s,�w) = lim
t!1

K(s, t + w, t) 
e⇢s

�
Mg(�)(1 � s)

�w
1 � e�sMg(�)(1 � s)

=
e⇢s

�
e�sR(1 � �) + �

�w
1 � e�s

�
e�sR(1 � �) + �

� . (7)

An upper bound on the delay violation probability can be

computed as [21]

pv(w) = inf
s>0

{K(s,�w)} = inf
s>0

(
e⇢s

�
e�sR(1 � �) + �

�w
1 � e�s

�
e�sR(1 � �) + �

�
)
.

(8)

Remark 1. Our results can be easily extended to the case
where S1 knows the instantaneous channel realization and
performs optimal rate adaptation. In that case, the Mellin
transform of g(�i) can be computed as

Mg(�)(s) = E�i ,Yi {g(�i,Yi)s�1}
= (1 � q2)Mz1(�i )(s) + q2Mz2(�i )(s)

where Mz1(�)(s) = e
1

snr · snrs�1 ·�(s, snr�1), Mz2(�)(s) = 1+ (s�
1)e 1

snr snrs�2 · �(s � 2, snr�1), snr = P1r�✓1 /�2 is the average
SNR, and �(s, y) =

Ø 1
y

xs�1e�x dx is the upper incomplete
Gamma function.

IV. AVERAGE AGE OF INFORMATION

In this section, we provide the analysis regarding the average
AoI. At a time slot n, the AoI, �(n), seen at the destination, is
�(n) = n � U(n). U(n) is the time the latest received updated
was generated and n is the current time. Thus, the AoI takes
discrete numbers. An example for the AoI evolution can be
found in Fig. 2.
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Figure 2. A possible example for the evolution of the AoI �(n). Note that
every time we have a successful transmission the AoI becomes one.

Let Ti denote the time between two consecutive attempted
transmissions; Xk is the elapsed time at the destination be-
tween successful reception of k-th and the (k + 1)-th status
updates, and M denotes the number of attempted transmissions
between two successfully received status updates at D. Then
we have that

Xk =

M’
i=1

Ti . (9)

Note that M is a random variable. Note that Xk is a
stationary process, thus, E[X] = E[Xk] and E[X2] = E[X2

k ]
for any k.

In order to compute the average AoI, we consider a period
of N time slots where K successful updates occur, then we
have

�N =
1
N

N’
n=1
�(n) = 1

N

K’
k=1

Yk =
K
N

1
K

K’
k=1

Yk . (10)

Since lim
N!1

K
N =

1
E[X] , and 1

K

KÕ
k=1

Yk is the average of Y , we

have
� = lim

N!1
�N =

E[Y ]
E[X] . (11)

From Fig. 2, we obtain that

Yk =
Xk’
m=1

m =
Xk(Xk + 1)

2 . (12)

Then we have

�N =
K
N

1
K

K’
k=1

Yk =
E

h
X2
k

2 +
Xk
2

i
E[X] =

E[X2]
2E[X] +

1
2 . (13)

We can calculate E[X] as follows

E[X] =
1’

M=1
ME[T](1 � p2)M�1p2 =

E[T]
p2

(14)

where p2 is the average success probability of the transmission
from S2 and is given by

p2 = P

(
SINR2 =

P2 |h2 |2r�✓2
P1 |h1 |2r�✓1 + �

2 � �2

)
=

��2�2r ✓2
P2

1 + �2
P1
P2
( r2
r1
)✓
(15)

where �2 is the SINR threshold.
For the second moment of X , we utilize that

X2
k =

 
M’
i=1

Ti

!2

=

M’
i=1

T2
i +

M’
i=1

M’
j=1, j,i

TiTj . (16)

Due to the stationarity of Ti , we use E[T] for the average of
Ti for arbitrary i. Taking the conditional expectation of both
sides, we obtain

E[X2 |M] = ME[T2] + M(M � 1) (E[T])2 . (17)

Then

E[X2] =
1’

M=1
E[X2 |M](1 � p2)M�1p2

p2>0
=
E[T2]

p2
+

2(1 � p2)E[T]2
p2

2
. (18)

After substituting (14) and (18) into (13), we have that the
average AoI, �, can be written as

� =
E[T2]
2E[T] +

E[T](1 � p2)
p2

+
1
2 . (19)

Now we proceed with the derivation of E[T] and E[T2].
Recall that T is the time between two consecutive attempted
transmissions, thus we have

P{T = k} = (1 � q2)k�1q2. (20)

Then,

E[T] =
1’
k=1

kP{T = k} = 1
q2
, (21)

E[T2] =
1’
k=1

k2P{T = k} = 2 � q2

q2
2
. (22)

Thus, we conclude that the average AoI is given by

� =
1

q2p2
. (23)

V. NUMERICAL RESULTS

In this section we provide numerical results for the analysis
presented in the previous sections.

We consider the case where r1 = r2 = 80, ✓ = 4, � = 4, �2 =
0.5, P1 = P2 = 0.01. In Fig. 3, we depict the interplay between
delay violation probability and average AoI for different values
of q2. More specifically, 0.1  q2  0.7 with a step of 0.1 and
we consider three cases for w = 2,3,5.
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Figure 3. Delay violation probability vs. average AoI for different q2 and w.
q2 varies from 0.2 to 0.7 with a step 0.1.

As q2 increases, we observe that the average AoI decreases,
and the delay violation probability increases. For w = 2, which
denotes the case of stringent delay requirement, when q2 =
0.7, then the required delay is violated with probability one.
This is expected since, the more S2 attempts to transmit, the
more interference it creates to the transmission of S1. At the
same time, the more S2 samples its source, thus attempting
to transmit more often, the more updated information D has.
Note that w does not affect the average AoI for S2, however,
as w increases, the delay violation probability decreases since
S1 becomes more delay tolerant.

In Fig. 4, we depict the interplay between delay violation
probability and average AoI for different values of q2, w, and
P1. We observe that increasing the transmit power results in
significant decrease of the delay violation probability and an
increase of AoI due to larger interference.
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We can calculate E[X] as follows

E[X] =
1’

M=1
ME[T](1 � p2)M�1p2 =

E[T]
p2

(14)

where p2 is the average success probability of the transmission
from S2 and is given by

p2 = P

(
SINR2 =

P2 |h2 |2r�✓2
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2 � �2
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where �2 is the SINR threshold.
For the second moment of X , we utilize that

X2
k =

 
M’
i=1

Ti

!2

=

M’
i=1

T2
i +

M’
i=1

M’
j=1, j,i

TiTj . (16)

Due to the stationarity of Ti , we use E[T] for the average of
Ti for arbitrary i. Taking the conditional expectation of both
sides, we obtain

E[X2 |M] = ME[T2] + M(M � 1) (E[T])2 . (17)

Then

E[X2] =
1’

M=1
E[X2 |M](1 � p2)M�1p2

p2>0
=
E[T2]

p2
+

2(1 � p2)E[T]2
p2

2
. (18)

After substituting (14) and (18) into (13), we have that the
average AoI, �, can be written as

� =
E[T2]
2E[T] +

E[T](1 � p2)
p2

+
1
2 . (19)

Now we proceed with the derivation of E[T] and E[T2].
Recall that T is the time between two consecutive attempted
transmissions, thus we have

P{T = k} = (1 � q2)k�1q2. (20)

Then,

E[T] =
1’
k=1

kP{T = k} = 1
q2
, (21)

E[T2] =
1’
k=1

k2P{T = k} = 2 � q2

q2
2
. (22)

Thus, we conclude that the average AoI is given by

� =
1

q2p2
. (23)

V. NUMERICAL RESULTS

In this section we provide numerical results for the analysis
presented in the previous sections.

We consider the case where r1 = r2 = 80, ✓ = 4, � = 4, �2 =
0.5, P1 = P2 = 0.01. In Fig. 3, we depict the interplay between
delay violation probability and average AoI for different values
of q2. More specifically, 0.1  q2  0.7 with a step of 0.1 and
we consider three cases for w = 2,3,5.

2 4 6 8 10 12 14 16

Average AoI at S2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

De
la

y 
Vi

ol
at

io
n 

Pr
ob

. a
t S

1

w=2
w=3
w=5

Figure 3. Delay violation probability vs. average AoI for different q2 and w.
q2 varies from 0.2 to 0.7 with a step 0.1.

As q2 increases, we observe that the average AoI decreases,
and the delay violation probability increases. For w = 2, which
denotes the case of stringent delay requirement, when q2 =
0.7, then the required delay is violated with probability one.
This is expected since, the more S2 attempts to transmit, the
more interference it creates to the transmission of S1. At the
same time, the more S2 samples its source, thus attempting
to transmit more often, the more updated information D has.
Note that w does not affect the average AoI for S2, however,
as w increases, the delay violation probability decreases since
S1 becomes more delay tolerant.

In Fig. 4, we depict the interplay between delay violation
probability and average AoI for different values of q2, w, and
P1. We observe that increasing the transmit power results in
significant decrease of the delay violation probability and an
increase of AoI due to larger interference.
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We can calculate E[X] as follows
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where p2 is the average success probability of the transmission
from S2 and is given by
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where �2 is the SINR threshold.
For the second moment of X , we utilize that
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Due to the stationarity of Ti , we use E[T] for the average of
Ti for arbitrary i. Taking the conditional expectation of both
sides, we obtain

E[X2 |M] = ME[T2] + M(M � 1) (E[T])2 . (17)

Then

E[X2] =
1’

M=1
E[X2 |M](1 � p2)M�1p2

p2>0
=
E[T2]

p2
+

2(1 � p2)E[T]2
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2
. (18)

After substituting (14) and (18) into (13), we have that the
average AoI, �, can be written as

� =
E[T2]
2E[T] +

E[T](1 � p2)
p2

+
1
2 . (19)

Now we proceed with the derivation of E[T] and E[T2].
Recall that T is the time between two consecutive attempted
transmissions, thus we have

P{T = k} = (1 � q2)k�1q2. (20)

Then,

E[T] =
1’
k=1

kP{T = k} = 1
q2
, (21)

E[T2] =
1’
k=1

k2P{T = k} = 2 � q2

q2
2
. (22)

Thus, we conclude that the average AoI is given by

� =
1

q2p2
. (23)

V. NUMERICAL RESULTS

In this section we provide numerical results for the analysis
presented in the previous sections.

We consider the case where r1 = r2 = 80, ✓ = 4, � = 4, �2 =
0.5, P1 = P2 = 0.01. In Fig. 3, we depict the interplay between
delay violation probability and average AoI for different values
of q2. More specifically, 0.1  q2  0.7 with a step of 0.1 and
we consider three cases for w = 2,3,5.
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Figure 3. Delay violation probability vs. average AoI for different q2 and w.
q2 varies from 0.2 to 0.7 with a step 0.1.

As q2 increases, we observe that the average AoI decreases,
and the delay violation probability increases. For w = 2, which
denotes the case of stringent delay requirement, when q2 =
0.7, then the required delay is violated with probability one.
This is expected since, the more S2 attempts to transmit, the
more interference it creates to the transmission of S1. At the
same time, the more S2 samples its source, thus attempting
to transmit more often, the more updated information D has.
Note that w does not affect the average AoI for S2, however,
as w increases, the delay violation probability decreases since
S1 becomes more delay tolerant.

In Fig. 4, we depict the interplay between delay violation
probability and average AoI for different values of q2, w, and
P1. We observe that increasing the transmit power results in
significant decrease of the delay violation probability and an
increase of AoI due to larger interference.
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event. We will discuss below the possible sources of error.
The service process also depends on the activity of the sensor.
The random variable �n denotes whether the sensor is active
or not at time n (�n = 1 when the sensor is active and �n = 0
otherwise). Then, the service in the bit domain is given by

sn =

8>>>>><
>>>>>:

R(�), if ⌦n = success and �n = 0
0, if ⌦n = error and �n = 0
R(�), if ⌦ = success and �n = 1
0, if ⌦n = error and �n = 1

.

Note that the system can be seen as a memoryless on-off
server with parameters R and activation probability pa where
the transmission rate R determines pa = P{Cn � R}.

Using the transformation sn = R(�) = log g(�), we have

g(�) =

8>>>>><
>>>>>:

eR, if ⌦ = success and �n = 0
1, if ⌦n = error and �n = 0
eR, if ⌦n = success and �n = 1
1, if ⌦n = error and �n = 1

,

Since P{�n = 1} = q2, the Mellin transform of g(�) can be
computed as

Mg(�)(s) = (1 � q2)
h
✏1 + (1 � ✏1)e(s�1)R

i

+ q2
h
✏2 + (1 � ✏2)e(s�1)R

i
= e(s�1)R(1 � �) + �,

where � = ✏1 � q2(✏1 � ✏2).
If the packet length is assumed large, the probability of
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1 + � P2
P1
( r1
r2
)✓
. (5)

B. Delay Bound

For exposition convenience, we assume constant arrivals so
that (⇢,�) are independent of s. The kernel is upper bounded
by [21]
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�
Mg(�)(1 � s)

�w 1 �
�
e�sMg(�)(1 � s)

� t+1

1 � e�sMg(�)(1 � s) .

(6)
The queueing system is stable if e�sMg(�)(1 � s) < 1.

Considering a stable queueing system, the steady-state ker-
nel is given by
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An upper bound on the delay violation probability can be

computed as [21]
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�
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e�sR(1 � �) + �

�
)
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(8)

Remark 1. Our results can be easily extended to the case
where S1 knows the instantaneous channel realization and
performs optimal rate adaptation. In that case, the Mellin
transform of g(�i) can be computed as

Mg(�)(s) = E�i ,Yi {g(�i,Yi)s�1}
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where Mz1(�)(s) = e
1
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1)e 1

snr snrs�2 · �(s � 2, snr�1), snr = P1r�✓1 /�2 is the average
SNR, and �(s, y) =

Ø 1
y

xs�1e�x dx is the upper incomplete
Gamma function.

IV. AVERAGE AGE OF INFORMATION

In this section, we provide the analysis regarding the average
AoI. At a time slot n, the AoI, �(n), seen at the destination, is
�(n) = n � U(n). U(n) is the time the latest received updated
was generated and n is the current time. Thus, the AoI takes
discrete numbers. An example for the AoI evolution can be
found in Fig. 2.
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Figure 2. A possible example for the evolution of the AoI �(n). Note that
every time we have a successful transmission the AoI becomes one.

Let Ti denote the time between two consecutive attempted
transmissions; Xk is the elapsed time at the destination be-
tween successful reception of k-th and the (k + 1)-th status
updates, and M denotes the number of attempted transmissions
between two successfully received status updates at D. Then
we have that

Xk =

M’
i=1

Ti . (9)

Note that M is a random variable. Note that Xk is a
stationary process, thus, E[X] = E[Xk] and E[X2] = E[X2

k ]
for any k.

In order to compute the average AoI, we consider a period
of N time slots where K successful updates occur, then we
have
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K
N

1
K

K’
k=1

Yk . (10)

Since lim
N!1

K
N =

1
E[X] , and 1

K

KÕ
k=1

Yk is the average of Y , we

have
� = lim

N!1
�N =

E[Y ]
E[X] . (11)

From Fig. 2, we obtain that

Yk =
Xk’
m=1

m =
Xk(Xk + 1)

2 . (12)

Then we have
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Yk =
E

h
X2
k

2 +
Xk
2

i
E[X] =

E[X2]
2E[X] +

1
2 . (13)

We can calculate E[X] as follows

E[X] =
1’

M=1
ME[T](1 � p2)M�1p2 =

E[T]
p2

(14)

where p2 is the average success probability of the transmission
from S2 and is given by

p2 = P

(
SINR2 =

P2 |h2 |2r�✓2
P1 |h1 |2r�✓1 + �
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)
=

��2�2r ✓2
P2
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P1
P2
( r2
r1
)✓
(15)

where �2 is the SINR threshold.
For the second moment of X , we utilize that
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T2
i +

M’
i=1
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j=1, j,i

TiTj . (16)

Due to the stationarity of Ti , we use E[T] for the average of
Ti for arbitrary i. Taking the conditional expectation of both
sides, we obtain

E[X2 |M] = ME[T2] + M(M � 1) (E[T])2 . (17)

Then

E[X2] =
1’

M=1
E[X2 |M](1 � p2)M�1p2

p2>0
=
E[T2]

p2
+

2(1 � p2)E[T]2
p2

2
. (18)

After substituting (14) and (18) into (13), we have that the
average AoI, �, can be written as

� =
E[T2]
2E[T] +

E[T](1 � p2)
p2

+
1
2 . (19)

Now we proceed with the derivation of E[T] and E[T2].
Recall that T is the time between two consecutive attempted
transmissions, thus we have

P{T = k} = (1 � q2)k�1q2. (20)

Then,

E[T] =
1’
k=1

kP{T = k} = 1
q2
, (21)

E[T2] =
1’
k=1

k2P{T = k} = 2 � q2

q2
2
. (22)

Thus, we conclude that the average AoI is given by

� =
1

q2p2
. (23)

V. NUMERICAL RESULTS

In this section we provide numerical results for the analysis
presented in the previous sections.

We consider the case where r1 = r2 = 80, ✓ = 4, � = 4, �2 =
0.5, P1 = P2 = 0.01. In Fig. 3, we depict the interplay between
delay violation probability and average AoI for different values
of q2. More specifically, 0.1  q2  0.7 with a step of 0.1 and
we consider three cases for w = 2,3,5.
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Figure 3. Delay violation probability vs. average AoI for different q2 and w.
q2 varies from 0.2 to 0.7 with a step 0.1.

As q2 increases, we observe that the average AoI decreases,
and the delay violation probability increases. For w = 2, which
denotes the case of stringent delay requirement, when q2 =
0.7, then the required delay is violated with probability one.
This is expected since, the more S2 attempts to transmit, the
more interference it creates to the transmission of S1. At the
same time, the more S2 samples its source, thus attempting
to transmit more often, the more updated information D has.
Note that w does not affect the average AoI for S2, however,
as w increases, the delay violation probability decreases since
S1 becomes more delay tolerant.

In Fig. 4, we depict the interplay between delay violation
probability and average AoI for different values of q2, w, and
P1. We observe that increasing the transmit power results in
significant decrease of the delay violation probability and an
increase of AoI due to larger interference.
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Now we proceed with the derivation of E[T] and E[T2].
Recall that T is the time between two consecutive attempted
transmissions, thus we have
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Then,
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Thus, we conclude that the average AoI is given by

� =
1

q2p2
. (23)

V. NUMERICAL RESULTS

In this section we provide numerical results for the analysis
presented in the previous sections.

We consider the case where r1 = r2 = 80, ✓ = 4, � = 4, �2 =
0.5, P1 = P2 = 0.01. In Fig. 3, we depict the interplay between
delay violation probability and average AoI for different values
of q2. More specifically, 0.1  q2  0.7 with a step of 0.1 and
we consider three cases for w = 2,3,5.
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Figure 3. Delay violation probability vs. average AoI for different q2 and w.
q2 varies from 0.2 to 0.7 with a step 0.1.

As q2 increases, we observe that the average AoI decreases,
and the delay violation probability increases. For w = 2, which
denotes the case of stringent delay requirement, when q2 =
0.7, then the required delay is violated with probability one.
This is expected since, the more S2 attempts to transmit, the
more interference it creates to the transmission of S1. At the
same time, the more S2 samples its source, thus attempting
to transmit more often, the more updated information D has.
Note that w does not affect the average AoI for S2, however,
as w increases, the delay violation probability decreases since
S1 becomes more delay tolerant.

In Fig. 4, we depict the interplay between delay violation
probability and average AoI for different values of q2, w, and
P1. We observe that increasing the transmit power results in
significant decrease of the delay violation probability and an
increase of AoI due to larger interference.
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Now we proceed with the derivation of E[T] and E[T2].
Recall that T is the time between two consecutive attempted
transmissions, thus we have
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V. NUMERICAL RESULTS

In this section we provide numerical results for the analysis
presented in the previous sections.

We consider the case where r1 = r2 = 80, ✓ = 4, � = 4, �2 =
0.5, P1 = P2 = 0.01. In Fig. 3, we depict the interplay between
delay violation probability and average AoI for different values
of q2. More specifically, 0.1  q2  0.7 with a step of 0.1 and
we consider three cases for w = 2,3,5.
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Figure 3. Delay violation probability vs. average AoI for different q2 and w.
q2 varies from 0.2 to 0.7 with a step 0.1.

As q2 increases, we observe that the average AoI decreases,
and the delay violation probability increases. For w = 2, which
denotes the case of stringent delay requirement, when q2 =
0.7, then the required delay is violated with probability one.
This is expected since, the more S2 attempts to transmit, the
more interference it creates to the transmission of S1. At the
same time, the more S2 samples its source, thus attempting
to transmit more often, the more updated information D has.
Note that w does not affect the average AoI for S2, however,
as w increases, the delay violation probability decreases since
S1 becomes more delay tolerant.

In Fig. 4, we depict the interplay between delay violation
probability and average AoI for different values of q2, w, and
P1. We observe that increasing the transmit power results in
significant decrease of the delay violation probability and an
increase of AoI due to larger interference.
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In this section we provide numerical results for the analysis
presented in the previous sections.

We consider the case where r1 = r2 = 80, ✓ = 4, � = 4, �2 =
0.5, P1 = P2 = 0.01. In Fig. 3, we depict the interplay between
delay violation probability and average AoI for different values
of q2. More specifically, 0.1  q2  0.7 with a step of 0.1 and
we consider three cases for w = 2,3,5.

2 4 6 8 10 12 14 16

Average AoI at S2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
el

ay
 V

io
la

tio
n 

Pr
ob

. a
t S

1

w=2
w=3
w=5

Figure 3. Delay violation probability vs. average AoI for different q2 and w.
q2 varies from 0.2 to 0.7 with a step 0.1.

As q2 increases, we observe that the average AoI decreases,
and the delay violation probability increases. For w = 2, which
denotes the case of stringent delay requirement, when q2 =
0.7, then the required delay is violated with probability one.
This is expected since, the more S2 attempts to transmit, the
more interference it creates to the transmission of S1. At the
same time, the more S2 samples its source, thus attempting
to transmit more often, the more updated information D has.
Note that w does not affect the average AoI for S2, however,
as w increases, the delay violation probability decreases since
S1 becomes more delay tolerant.

In Fig. 4, we depict the interplay between delay violation
probability and average AoI for different values of q2, w, and
P1. We observe that increasing the transmit power results in
significant decrease of the delay violation probability and an
increase of AoI due to larger interference.
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V. NUMERICAL RESULTS

In this section we provide numerical results for the analysis
presented in the previous sections.

We consider the case where r1 = r2 = 80, ✓ = 4, � = 4, �2 =
0.5, P1 = P2 = 0.01. In Fig. 3, we depict the interplay between
delay violation probability and average AoI for different values
of q2. More specifically, 0.1  q2  0.7 with a step of 0.1 and
we consider three cases for w = 2,3,5.
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Figure 3. Delay violation probability vs. average AoI for different q2 and w.
q2 varies from 0.2 to 0.7 with a step 0.1.

As q2 increases, we observe that the average AoI decreases,
and the delay violation probability increases. For w = 2, which
denotes the case of stringent delay requirement, when q2 =
0.7, then the required delay is violated with probability one.
This is expected since, the more S2 attempts to transmit, the
more interference it creates to the transmission of S1. At the
same time, the more S2 samples its source, thus attempting
to transmit more often, the more updated information D has.
Note that w does not affect the average AoI for S2, however,
as w increases, the delay violation probability decreases since
S1 becomes more delay tolerant.

In Fig. 4, we depict the interplay between delay violation
probability and average AoI for different values of q2, w, and
P1. We observe that increasing the transmit power results in
significant decrease of the delay violation probability and an
increase of AoI due to larger interference.
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V. NUMERICAL RESULTS

In this section we provide numerical results for the analysis
presented in the previous sections.

We consider the case where r1 = r2 = 80, ✓ = 4, � = 4, �2 =
0.5, P1 = P2 = 0.01. In Fig. 3, we depict the interplay between
delay violation probability and average AoI for different values
of q2. More specifically, 0.1  q2  0.7 with a step of 0.1 and
we consider three cases for w = 2,3,5.
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Figure 3. Delay violation probability vs. average AoI for different q2 and w.
q2 varies from 0.2 to 0.7 with a step 0.1.

As q2 increases, we observe that the average AoI decreases,
and the delay violation probability increases. For w = 2, which
denotes the case of stringent delay requirement, when q2 =
0.7, then the required delay is violated with probability one.
This is expected since, the more S2 attempts to transmit, the
more interference it creates to the transmission of S1. At the
same time, the more S2 samples its source, thus attempting
to transmit more often, the more updated information D has.
Note that w does not affect the average AoI for S2, however,
as w increases, the delay violation probability decreases since
S1 becomes more delay tolerant.

In Fig. 4, we depict the interplay between delay violation
probability and average AoI for different values of q2, w, and
P1. We observe that increasing the transmit power results in
significant decrease of the delay violation probability and an
increase of AoI due to larger interference.
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V. NUMERICAL RESULTS

In this section we provide numerical results for the analysis
presented in the previous sections.

We consider the case where r1 = r2 = 80, ✓ = 4, � = 4, �2 =
0.5, P1 = P2 = 0.01. In Fig. 3, we depict the interplay between
delay violation probability and average AoI for different values
of q2. More specifically, 0.1  q2  0.7 with a step of 0.1 and
we consider three cases for w = 2,3,5.
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Figure 3. Delay violation probability vs. average AoI for different q2 and w.
q2 varies from 0.2 to 0.7 with a step 0.1.

As q2 increases, we observe that the average AoI decreases,
and the delay violation probability increases. For w = 2, which
denotes the case of stringent delay requirement, when q2 =
0.7, then the required delay is violated with probability one.
This is expected since, the more S2 attempts to transmit, the
more interference it creates to the transmission of S1. At the
same time, the more S2 samples its source, thus attempting
to transmit more often, the more updated information D has.
Note that w does not affect the average AoI for S2, however,
as w increases, the delay violation probability decreases since
S1 becomes more delay tolerant.

In Fig. 4, we depict the interplay between delay violation
probability and average AoI for different values of q2, w, and
P1. We observe that increasing the transmit power results in
significant decrease of the delay violation probability and an
increase of AoI due to larger interference.
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V. NUMERICAL RESULTS

In this section we provide numerical results for the analysis
presented in the previous sections.

We consider the case where r1 = r2 = 80, ✓ = 4, � = 4, �2 =
0.5, P1 = P2 = 0.01. In Fig. 3, we depict the interplay between
delay violation probability and average AoI for different values
of q2. More specifically, 0.1  q2  0.7 with a step of 0.1 and
we consider three cases for w = 2,3,5.
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Figure 3. Delay violation probability vs. average AoI for different q2 and w.
q2 varies from 0.2 to 0.7 with a step 0.1.

As q2 increases, we observe that the average AoI decreases,
and the delay violation probability increases. For w = 2, which
denotes the case of stringent delay requirement, when q2 =
0.7, then the required delay is violated with probability one.
This is expected since, the more S2 attempts to transmit, the
more interference it creates to the transmission of S1. At the
same time, the more S2 samples its source, thus attempting
to transmit more often, the more updated information D has.
Note that w does not affect the average AoI for S2, however,
as w increases, the delay violation probability decreases since
S1 becomes more delay tolerant.

In Fig. 4, we depict the interplay between delay violation
probability and average AoI for different values of q2, w, and
P1. We observe that increasing the transmit power results in
significant decrease of the delay violation probability and an
increase of AoI due to larger interference.
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V. NUMERICAL RESULTS

In this section we provide numerical results for the analysis
presented in the previous sections.

We consider the case where r1 = r2 = 80, ✓ = 4, � = 4, �2 =
0.5, P1 = P2 = 0.01. In Fig. 3, we depict the interplay between
delay violation probability and average AoI for different values
of q2. More specifically, 0.1  q2  0.7 with a step of 0.1 and
we consider three cases for w = 2,3,5.

2 4 6 8 10 12 14 16

Average AoI at S2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
el

ay
 V

io
la

tio
n 

Pr
ob

. a
t S

1

w=2
w=3
w=5

Figure 3. Delay violation probability vs. average AoI for different q2 and w.
q2 varies from 0.2 to 0.7 with a step 0.1.

As q2 increases, we observe that the average AoI decreases,
and the delay violation probability increases. For w = 2, which
denotes the case of stringent delay requirement, when q2 =
0.7, then the required delay is violated with probability one.
This is expected since, the more S2 attempts to transmit, the
more interference it creates to the transmission of S1. At the
same time, the more S2 samples its source, thus attempting
to transmit more often, the more updated information D has.
Note that w does not affect the average AoI for S2, however,
as w increases, the delay violation probability decreases since
S1 becomes more delay tolerant.

In Fig. 4, we depict the interplay between delay violation
probability and average AoI for different values of q2, w, and
P1. We observe that increasing the transmit power results in
significant decrease of the delay violation probability and an
increase of AoI due to larger interference.
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• As w increases, the delay violation probability decreases since S1 becomes
more delay tolerant.

• Increasing the transmit power of S1 results in significant decrease of the
delay violation probability and an increase of AoI due to larger interference.

Both delay violation probability and AoI can be kept low even for
stringent delay constraints if the sampling rate is properly adapted.



AoI and Packet Drop Rate Interplay

• The first user has deadline-constrained traffic and 
access the channel with probability q1 when there is a 
packet in its queue

• User 2 (AoI-oriented) accesses the channel only if 
samples an update with a probability q2 

• If the transmission of a status update by user 2 fails, 
then is dropped (avoid transmitting outdated 
information)

• For the AoI-oriented user, we provide the distribution 
of the AoI, the average AoI, and the probability the AoI
to be larger than a value for each time slot.

2022-04-07 46

E. Fountoulakis, T. Charalambous, N. Nomikos, A. Ephremides, N. Pappas, "Information Freshness and Packet 
Drop Rate Interplay in a Two-User Multi-Access Channel", IEEE ITW, Apr. 2021.



AoI and Packet Drop Rate Interplay
• We model the evolution of AoI as a Discrete Time 

Markov Chain
• The probability that AoI has value i is given by

• The average AoI is
• We can also obtain the AoI violation probability as 
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AoI and Packet Drop Rate Interplay
• We model the evolution of AoI as a Discrete Time 

Markov Chain
• The probability that AoI has value i is given by

• The average AoI is
• We can also obtain the AoI violation probability as 
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Remarks and future directions
2022-04-07 49

• AoI has emerged as an end-to-end performance metric for systems that employ 
status updates.

• Introduction of information freshness requirements will create systems that 
work smarter than harder, so they will be more effective.
o The updating process should not underload nor overload the system.
o The system should process new updates rather than old. 
o The system should avoid processing updates without sufficient novelty. 



Remarks and future directions 2022-04-07 50

• There are still many interesting research directions
o Definition of effective age (term coined by Prof. Ephremides in ITA 2015)
o Sampling and remote reconstruction
o Deploying of AoI in machine learning

• It provides stronger connections with areas such as Signal Processing
• Metrics that can capture the requirements of Wireless Networked Control 

Systems

• AoI is one of the dimensions of semantics-empowered communications!

M. Kountouris, N. Pappas, "Semantics-Empowered Communication for Networked Intelligent 
Systems", IEEE Communications Magazine, June 2021.
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Age of Information
A New Concept, Metric, and Tool

Antzela Kosta, Nikolaos Pappas 
and Vangelis Angelakis

In an increasingly networked world in which information is becoming increasingly actual, how 
can a system know with certainty just how fresh the information on a remote system is? Much 
work has been done on delay or latency in systems, but only recently has the concept of the 
freshness of information in or about a system become quantifiable. This is termed the Age of 
Information.

Age of Information provides a whole new set of metrics and tools that can be used to 
characterize the freshness of information in communications, control and, indeed, information 
systems. In its early development, this monograph provides the reader with an easy-to-read 
tutorial-like introduction into this novel approach of dealing with information within systems. A 
critical summary of the work to date details the concept for the reader. A description of the 
fundamentals of the performance metrics is then presented before showing how the approach 
can be used as a tool in improving metrics in other contexts.

The survey and tutorial nature of this monograph will save any researcher or student 
considerable time in understanding the basics of Age of Information, which is destined to 
become an important research topic in networked systems.

Foundations and Trends® in
Networking
12:3

Age of Information
A New Concept, Metric, 

and Tool
Antzela Kosta, Nikolaos Pappas 

and Vangelis Angelakis

now

now

This book is originally published as
Foundations and Trends® in Networking
Volume 12 Issues 3, ISSN: 1554-057X



Wireless ecosystem in the near future
• Networked Intelligent Systems: 

– real time autonomous systems
• Sensor fusion, on time status updates, real time information 

reconstruction, network and device computation, traffic 
flows with synced requirements, human in the loop

• Distributed ML over wireless

– Exchange of large datasets in a timely manner over 
wireless
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• AoI is a proxy towards semantics communications
• Value and importance of information, accuracy



General description of Semantics of Information (SoI) metric

• A comprehensive system metric, Semantics of Information (SoI), which 
captures the significance and usefulness of information w.r.t the goal of data 
exchange and the application requirements.

• Information attributes, which can be decomposed into innate (objective) and 
contextual (subjective).

• Innate are the attributes inherent to information regardless of its use, such as 
AoI, precision, correctness.

• Contextual are attributes that depend on the particular context or application
for which information is being used. 
– For example, timeliness - a function of AoI, accuracy (distortion), perception 

via divergence or distance function.
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• M. Kountouris, N. Pappas, "Semantics-Empowered Communication for Networked Intelligent Systems", IEEE 
Communications Magazine, June 2021.

• N. Pappas, M. Kountouris, ‘‘Goal-Oriented Communication for Real-Time Tracking in Autonomous Systems", 
IEEE International Conference on Autonomous Systems (ICAS), Aug. 2021.



Goal-Oriented Communication for 
Real-Time Tracking in Autonomous Systems
N. Pappas, M. Kountouris, ‘‘Goal-Oriented Communication for Real-
Time Tracking in Autonomous Systems", IEEE International 
Conference on Autonomous Systems (ICAS), Aug. 2021.



Introduction
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• We consider real-time tracking and reconstruction of an information
source.

• Real-time reconstruction is performed at the destination for remote
actuation.

• This setting is relevant for real-time applications in autonomous
networked systems.

• We introduce new goal-oriented, semantics-empowered sampling and
communication policies, which account for the temporal evolution of
the source/process and the semantic and application-dependent value
of data being generated and transmitted.



System Model
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• A device monitors a two-state random process.
• The source initiates certain actions to the robotic object.
• The monitoring device samples and transmits status updates regarding the

evolution of the source.
• The application objective is to perform/maintain the actions of the original

object in real-time.



System Model
• Time is slotted.
• Wireless erasure communication channel with success probability:

where ht is the channel realization.
• ACK/NACK instantaneous and error free.
• Information source, Xt, is modelled by a two state Markov Chain.
• Xt is reconstructed at the destination,      , to perform actuation.
• The action of transmitting a sample is                  , otherwise, the 

transmitter remains silent                 .
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Key Performance Metrics
• Real-time reconstruction error (innate): measures the discrepancy between 

the original and the reconstructed source in a timeslot
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Key Performance Metrics
• Real-time reconstruction error (innate): measures the discrepancy between 

the original and the reconstructed source in a timeslot
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Time-averaged
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Key Performance Metrics
• Real-time reconstruction error (innate): measures the discrepancy between 

the original and the reconstructed source in a timeslot
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Time-averaged
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Key Performance Metrics
• Real-time reconstruction error (innate): measures the discrepancy between 

the original and the reconstructed source in a timeslot

• Cost of actuation error (contextual): captures the significance of the error at 
the point of actuation. Some errors may have larger impact than others.
– Ci,j denotes the cost of being in state i at the original source and in j at the reconstructed, 

when Et=1. In general                         . 
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Time-averaged

Average cost of actuation



Sampling and communication policies
• Uniform: sampling is performed periodically, independently of the temporal 

evolution of the source.
– It is a process-agnostic policy that could result in missing several state 

transitions during the time interval between two collected samples.
• Age-aware: the receiver triggers the acquisition and transmission of a new 

sample, once the AoI reaches a predefined threshold Ath.
– This policy is source-agnostic regarding the value of information but takes 

into account the timeliness.
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Sampling and communication policies
• Change-aware: sample generation is triggered at the transmitter whenever a 

change at the state of the source, with respect to the previous sample, is 
observed.

• Semantics-aware: extends the Change-aware into that the amount of change is 
not solely measured at the source but is also tracked by the difference in state 
between receiver and transmitter. 
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The transition matrix PE for the DTMC that models the system state is given by

The probability that the system is in an erroneous (not synced) state 
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Sampling and communication policies
• Semantics-aware: extends the Change-aware into that the amount of change is 

not solely measured at the source but is also tracked by the difference in state 
between receiver and transmitter. 
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• Sampling and transmission at every timeslot could provide the best performance for real-time 
reconstruction. It requires a very large number of samples, which are not necessarily useful and 
require excessive resources.

• The semantics-empowered policies reduce or even eliminate the generation of uninformative 
sample updates, thus improving network resource usage.

The transition matrix PE for the DTMC that models the system state is given by

The probability that the system is in an erroneous (not synced) state 

<latexit sha1_base64="+EFG1WOOcw+whcsv/+oP20yQKmo=">AAACmHicdVFdaxQxFM1Mq9bxa634Ul+Ci1IpXWYWaQsiLNZSfVvFbQuTYchk7+yGZjJpkiksYX6T/8U3/43Z7Txo614InHtO7r3JuYUS3Ng4/h2EG5v37j/Yehg9evzk6bPe8+0zUzeawYTVotYXBTUguISJ5VbAhdJAq0LAeXF5vNTPr0EbXssfdqEgq+hM8pIzaj2V936SFDuiKzxuc3fS4o+YCChtikkBMy4d1ZouWsdYGyX7pNSUuaG62k32VW7etU7tXbX4LV4jEBL5bG9t2Spd15WAnHbjieazuc0GJMN5rx8P4lXguyDpQB91Mc57v8i0Zk0F0jJBjUmTWNnMN7acCWgj0hhQlF3SGaQeSlqBydzK2Ba/8cwUl7X2R1q8Yv+ucLQyZlEV/mZF7dzc1pbk/7S0seVR5rhUjQXJbgaVjcC2xsst4SnXwKxYeECZ5v6tmM2p98n6XUbehOT2l++Cs+EgORi8/zbsjz51dmyhV+g12kUJOkQj9AWN0QSx4GXwIfgcnIQ74Sg8Db/eXA2DruYF+ifC738Ab6bHtA==</latexit>

PE =

"
1� 2pq(1�ps)

p+q
2pq(1�ps)

p+q

ps +
2pq(1�ps)

p+q 1� ps � 2pq(1�ps)
p+q

#
.

<latexit sha1_base64="gZ1eGeYu57+/Q8oJO+9CskUKucg="></latexit>
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Slowly-varying source – (p = 0.1, q = 0.15)
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Real-time Reconstruction Error
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Rapidly-varying source – (p = 0.2, q = 0.7)
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Cost of Actuation Error
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Semantics-aware Source Coding
P. Agheli, N. Pappas and M. Kountouris, “Semantics-Aware Source Coding 
in Status Update Systems”, arXiv, March 2022



Semantics-aware source coding 2022-04-07 70

• Information source generates status updates (packets) and forwards them to a TX 
• i.i.d. sequence of observations
• Packets generated according to Poisson(𝜆)
• TX encodes the packets and sends them to a remote monitor (RX)
• TX is bufferless (a newly-admitted packet is blocked when the channel is busy)
• Error-free channel

𝒳 = {𝑥#, 𝑥,, ⋯ , 𝑥)}
Discrete symbols

Probability of realization
@𝑝- = 𝑃.(𝑥-) – known PMF

wlog @𝑝- ≥ @𝑝/ , ∀ 𝑖 ≤ 𝑗

Importance-based 
Selective Encoding

Importance/semantic value
only 𝑘 most/least probable realizations selected
packets from remaining 𝑛−𝑘 realizations discarded

•TX encodes an admitted packet from the 𝑖-th
realization using a prefix-free code based on the 
truncated distribution with conditional probabilities 

𝑝6 =
78!
9"
, ∀ 𝑖 ∈ ℐ! ⊂ ℐ, where 𝑞! = ∑6∈ℐ" ;𝑝6

M.Bastopcu, B.Buyukates, S.Ulukus,“Optimal selective encoding for timely updates,” CISS 2020.
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• Timeliness (SoI): 𝒮 𝑡 = 𝑔 Δ 𝑡 (time-varying stoch. 
process)
o 𝑔:ℝ#$ → ℝ a non-increasing utility function of information 

freshness
o AoI: Δ 𝑡 = 𝑡 − 𝑢(𝑡)

Average SoI

𝑌6 = 𝑡6 − 𝑡6<%
update interval between the 𝑖-th successive 
arrival and its next one

service time
𝑆- = ℓ- time units
ℓ-: length of the codeword assigned to 𝑥-

waiting time𝑊- = ∑!0#1 𝑍!
𝑁: # admitted arrivals generated before 
finding the channel idle
𝑍!: time between two admitted arrivals, 
~exp 𝛾 , 𝛾 = 1/(𝜆𝑞!)
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§ Aim: Find the codeword lengths ℓ- that optimize a weighted sum of the average SoI 
and the average length for a cost function 𝜑(ℓ-), i.e., ∑- 𝑝-𝜑(ℓ-).

𝑓:ℝ!" → ℝ a non-decreasing function

• Quadratic cost function for the codeword length under binary alphabetic
• 𝜑 convex: longer (shorter) codewords are penalized more (less) than the 

linear case (e.g., Huffman coding)

Kraft-McMillan inequality: existence of a uniquely decodable code for a 
given set of codeword lengths 

Relaxation



Numerical evaluation 2022-04-07 73

Zipf(𝑛, 𝑠) distribution with pmf 𝑃%(𝑥) =
&/(#

∑$%&
' &/*#

𝑛 = |𝒳| = 100 and exponent 𝑠 = 0.4
𝑠 = 0 uniform, ↗ 𝑠 “peaky distribution”



Interplay among SoI, semantic filtering  (𝑘), and codeword length
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• Objective function continuously increases as cost
parameters increase for small 𝑘

• For large 𝑘: increasing cost parameters causes the objective
function to increase then decrease

• Increasing the input rate (hence, decreasing 𝑘∗), optimal
cost parameters increase

• When input rate is high: larger penalties for the codeword
length must be assigned to ensure transmitting the most
important data.



Other applications of SoI
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• G. Stamatakis, N. Pappas, A. Fragkiadakis, A. Traganitis, 
‘‘Semantics-Aware Active Fault Detection in Status Updating 
Systems", arXiv, Feb. 2022.

• G. Stamatakis, N. Pappas, A. Fragkiadakis, A. Traganitis, 
‘‘Autonomous Maintenance in IoT Networks via AoI-driven Deep 
Reinforcement Learning", IEEE INFOCOM - 4th Age of 
Information Workshop, May 2021.



Concluding remarks



Where we go from here 2022-04-07 77

Input 
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Encoder Decoder
Process

Semantic 
Sampling

Source
Encoder

.
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.
Semantic 
Multiple 
Access

Semantic ReconstructionSemantic Network Control & 
Orchestration

Decoder

.

.

.
Network

Communication process extends up to goal-oriented signal reconstruction and information exploitation
A monitored signal: a physical phenomenon/event distributed in space and evolving in time

Key semantic operations - Prioritize information and goal-driven representation of it
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